Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (1): 59-64    DOI: 10.11901/1005.3093.2020.169
ARTICLES Current Issue | Archive | Adv Search |
Anti-oxidization and Electronic Properties of Ti Doped MoS2 Films
XIE Mingling1, ZHANG Guang'an2, SHI Xing1, TAN Xi1, GAO Xiaoping1, SONG Yuzhe1()
1.Institute of Sensor Technology, Gansu Academy of Sciences, Lanzhou 730000, China
2.State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Lanzhou 730000, China
Cite this article: 

XIE Mingling, ZHANG Guang'an, SHI Xing, TAN Xi, GAO Xiaoping, SONG Yuzhe. Anti-oxidization and Electronic Properties of Ti Doped MoS2 Films. Chinese Journal of Materials Research, 2021, 35(1): 59-64.

Download:  HTML  PDF(2768KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Thin films of MoS2 and Ti-MoS2 were deposited on Si substrate by using magnetron sputtering respectively, and then oxidized in atmosphere with 70%RH at 28℃ for 360 h via a temperature and humidity chamber. Thereafter, the oxidation performance and electrical properties of the above two MoS2 films were characterized by XRD, XPS, UV-Vis spectrophotometer and four-point probe method. The results show that the Ti doping can affect the crystal orientation of MoS2 film, and the X-ray diffraction peaks of (110) and (100) of MoS2 disappear after Ti doping. The films prepared with applied current of 0.6 A for Ti-target are amorphous. Whilst, the band gap of Ti-MoS2 decrease and the conductivity increase for films, with the increasing applied current for the Ti target. The films are partially oxidized and present the composite state of MoS2 and MoO3 after oxidation in the atmosphere with 70%RH at 28℃ for 360 h, and the IMo-O/IMo-S ratio and band gap increase with the increasing applied current for the Ti target. Especially, the Ti-MoS2 film, prepared with applied current of 0.4 A for the Ti target, exhibits the better chemical stability.

Key words:  foundation discipline in material science      MoS2 film      magnetron sputtering      anti-oxidization      electrical property     
Received:  19 May 2020     
ZTFLH:  TH117  
Fund: Youth Science and Technology Innovation Fund Project of Gansu Academy of Sciences(2018QN-04);Cooperation Project of Gansu Academy of Science(2017HZ-02);Innovative Team Construction Project of Gansu Academy of Science(2020CX005-01);Application Technology Research and Development Project of Gansu Academy of Sciences(2018JK-16)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.169     OR     https://www.cjmr.org/EN/Y2021/V35/I1/59

Fig.1  Schematic of unbalanced magnetron sputtering
Fig.2  XRD patterns with the different Ti content of MoS2 films
Fig.3  Reflection spectrum of pure MoS2, 0.2A Ti-MoS2, 0.4A Ti-MoS2 and 0.6A Ti-MoS2 before and after stored at 26℃, RH70% condition
As-deposited filmAfter 336 h RH70%
Eg/eVρ/Ω·mREg/eVρ/Ω·mR
Pure MoS22.216.97×10-5174.282.307.00×10-5174.98
0.2A Ti-MoS21.665.83×10-5143.541.815.79×10-5144.75
0.4A Ti-MoS21.913.26×10-581.522.013.33×10-583.23
0.6A Ti-MoS21.893.33×10-583.292.003.33×10-583.22
Table 1  Electronic parameters of pure MoS2, 02A Ti-MoS2, 04A Ti-MoS2 and 06A Ti-MoS2 before and after stored at 26℃, RH70% condition
Fig.4  XPS spectrum of MoS2 and Ti- MoS2 film
IMo-O/IMo-SPure MoS20.2A Ti-MoS20.4A Ti-MoS20.6A Ti-MoS2
Before stored0.110.150.400.37
After stored0.150.310.380.46
Table 2  IMo-O/IMo-S ratio of MoS2 and Ti-MoS2 films before and after stored at 26℃, RH70% condition
1 Spalvins T. Lubrication with sputtered MoS2 films: Principles,operation, and limitations [J]. J. Mater. Eng. Perform., 1992, 1: 347
2 Zhu G B, Zhang D P, Qian J J. Research advances in molybdenum dissulfide-based nanomaterials in field of electrochemical sensing/hydrogen evolution [J]. J. Mater. Eng., 2019, 47: 20
朱刚兵, 张得鹏, 钱俊娟. 二硫化钼基纳米材料在电化学传感/析氢领域的研究进展 [J]. 材料工程, 2019, 47: 20
3 Potoczek M, Przybylski K, Rekas M. Defect structure and electrical properties of molybdenum disulphide [J]. J. Phys Chem Solids, 2006, 67: 2528
4 Hao L, Liu Y, Du Y, et al. Highly enhanced H2 sensing performance of few-layer MoS2/SiO2/Si heterojunctions by surface decoration of Pd nanoparticles [J]. Nanoscale Res. Lett., 2017, 12: 567
5 Wang A F, Zhang D J, Wu Y Z, et al. Effects of adding MoS2 and graphite on tribological properties of Ni-Cr based self-lubricating composites [J]. Chinese Journal of Materials Research, 2010, 24: 464
王爱芳, 张定军, 吴有智等. MoS2和石墨对Ni-Cr基复合材料摩擦学性能的影响 [J]. 材料研究学报, 2010, 24: 464
6 Fleischauer P, Reinhold B. Chemical and structural effects on the lubrication properties of sputtered MoS2 films [J]. Tribology T, 1988, 31: 239
7 Gardos M N. The synergistic effects of graphite on the friction and wear of MoS2 films in air [J]. Tribology T., 1988, 31: 214
8 Late D J, Liu B, Matte H S S R, et al. Hysteresis in single-layer MoS2 field effect transistors [J]. Acs. Nano., 2012, 6: 5635
9 Chen M, Wi S, Nam H, et al. Effects of MoS2 thickness and air humidity on transport characteristics of plasma-doped MoS2 field-effect transistors [J]. J. Vac Sci Technol B, 2014, 32: 06FF02
10 Moser J, Lévy F. Random stacking in MoS2-x sputtered thin films [J]. Thin. Solid Films, 1994, 240: 56
11 Lee W Y, More K L. Crystal orientation and near-interface structure of chemically vapor deposited MoS2 films [J]. J. Mater Res, 1995, 10: 49
12 Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. J. Mater Res., 1992, 7: 1564
13 Serpo ne N, Lawless D, Khairutdinov R. Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transitions in this indirect semiconductor [J]. J. Phys Chemistry, 1995, 99: 16646
14 Wen Y Y, Zeng X B, Chen X X, et al. Preparation and optical property of MoS2 layered-nano film [J]. Scientia Sinica Technologica, 2016, 000: 731
文杨阳, 曾祥斌, 陈晓晓等. 层状MoS2 纳米薄膜的制备及其光学特性 [J]. 中国科学. 技术科学, 2016, 000: 731
15 Ten Y. First-principles study of d2 family doped molybdenum disulfide thin films [D]. Harbin: Harbin Engineering University. 2017
滕悦. d2族掺杂MoS2薄膜的第一性原理研究 [D]. 哈尔滨: 哈尔滨工程大学2017
16 Williamson I, Li S, Correa Hernandez A, et al. Structural, electrical, phonon, and optical properties of Ti- and V-doped two-dimensional MoS2 [J]. Chem Phys Lett, 2017, 674: 157
17 Li H, Li X, Zhang G, et al. Exploring the tribophysics and tribochemistry of mos2 by sliding mos2/ti composite coating under different humidity [J]. Tribol Lett, 2017, 65: 38
18 Hao S, Yang B, Gao Y. Chemical vapor deposition growth and characterization of drop-like MoS2/MoO2 granular films [J]. phys status solidi B, 2016, 254: 1
19 Buck V. Preparation and properties of different types of sputtered MoS2 films [J]. Wear, 1987, 114: 263
20 Lavik M T, Campbell M E. Evidence of crystal structure in some sputtered mos2 films [J]. Tribol T, 1972, 15: 233
21 Fleischauer P D. Effects of crystallite orientation on environmental stability and lubrication properties of sputtered MoS2 thin films [J]. Tribol T, 1984, 27: 82
22 Spirko J A, Neiman M L, Oelker A M, et al. Electronic structure and reactivity of defect MoS2: I. Relative stabilities of clusters and edges, and electronic surface states [J]. Surf Sci, 2003, 542: 192
23 Erfanifam S, Mohseni S M, Jamilpanah L, et al. Tunable bandgap and spin-orbit coupling by composition control of MoS2 and MoOx(x=2 and 3) thin film compounds [J]. Mater Design, 2017, 122: 220
[1] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[2] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[3] ZHANG Peng, HUANG Dong, ZHANG Fuquan, YE Chong, WU Xiao, WU Huang. Effect of Graphitization Degree of Mesophase Pitch-based Carbon Fibers on Carbon Fiber/Al Interface Damage[J]. 材料研究学报, 2022, 36(8): 579-590.
[4] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
[5] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[6] ZHANG Zeling, WANG Shiqi, XU Bangli, ZHAO Yuhao, ZHANG Xuhai, FANG Feng. Electrocatalytic Oxygen Evolution Performance of High Entropy FeCoNiMoCr Alloy Thin Film Electrode[J]. 材料研究学报, 2021, 35(3): 193-200.
[7] SONG Guihong, LI Xiuyu, LI Guipeng, DU Hao, HU Fang. Thermoelectric Properties of Mg-rich Mg3Bi2 Films Prepared by Magnetron Sputtering[J]. 材料研究学报, 2021, 35(11): 835-842.
[8] TAN Xi, SONG Yuzhe, SHI Xin, QIANG Jin, WEI Tingxuan, LU Qihai. Magnetization Reversal Field and Magneto-Resistor of Spin Valve[J]. 材料研究学报, 2020, 34(4): 272-276.
[9] WANG Shiqi,HUO Wenyi,XU Zhengchao,ZHANG Xuhai,ZHOU Xuefeng,FANG Feng. Fabrication of Films of Co Doped TiO2 Nanotube Array and their Photocatalytic Reduction Performance[J]. 材料研究学报, 2020, 34(3): 176-182.
[10] Xiaodong LIU,Shuyong TAN,Wenyi HUO,Xuhai ZHANG,Qiyue SHAO,Feng FANG. Effect of Nitrogen Flow Ratio on Microstructure and Property of High-Entropy Alloy Films (CoCrFeNi)Nx Prepared by Magnetron Sputtering[J]. 材料研究学报, 2019, 33(3): 185-190.
[11] Wanqi QIU, Shulin WANG, Yitian CHENG, Zhongwu LIU, Xichun ZHONG, Dongling JIAO, Kesong ZHOU. Low-temperature Deposition of α-(Al,Cr)2O3 Films by Reactive Sputtering Method[J]. 材料研究学报, 2018, 32(4): 278-282.
[12] Yanxue WANG, Ruiwu LI, Wei FAN, Yuanyuan GUO, Yanwen ZHOU, Fayu WU. Effect of Annealing Oxygen Partial Pressure on Transmittance and Conductivity of AZO Thin Films[J]. 材料研究学报, 2018, 32(11): 861-866.
[13] Haiyang CHEN, Fei HE, Xuhai ZHANG, Qiyue SHAO, Feng FANG. Photocatalytic Reduction Properties of Palladium and Nitrogen Co-Doped TiO2 Thin Films[J]. 材料研究学报, 2017, 31(4): 255-260.
[14] LI Jiajun, LIU Hao, ZUO Yonggang, BAI Yang, YUAN Hewei, HE Qiyu, JIANG Long, GUO Hui, SUN Zhenlu, CHEN Guangchao. Analysis of Adhesive Strength between Magnetron Sputtered Copper Films and Substrate[J]. 材料研究学报, 2016, 30(8): 634-640.
[15] Jie LIU,Xuyan LIU,Fang LIU,Fei WANG,Deng PAN. Fabrication of a Three-dimensional Nanoporous Cu-Ti Alloy with Excellent Electrochemical Capacitance Performance[J]. 材料研究学报, 2015, 29(12): 913-920.
No Suggested Reading articles found!