Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (3): 193-200    DOI: 10.11901/1005.3093.2020.233
ARTICLES Current Issue | Archive | Adv Search |
Electrocatalytic Oxygen Evolution Performance of High Entropy FeCoNiMoCr Alloy Thin Film Electrode
ZHANG Zeling1,2, WANG Shiqi1,2, XU Bangli1, ZHAO Yuhao1, ZHANG Xuhai1,2, FANG Feng1,2()
1.School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2.Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China
Cite this article: 

ZHANG Zeling, WANG Shiqi, XU Bangli, ZHAO Yuhao, ZHANG Xuhai, FANG Feng. Electrocatalytic Oxygen Evolution Performance of High Entropy FeCoNiMoCr Alloy Thin Film Electrode. Chinese Journal of Materials Research, 2021, 35(3): 193-200.

Download:  HTML  PDF(7407KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Thin film of high entropy FeCoNiMoCr alloy was deposited on Ti substrate by magnetron sputtering method to obtain high entropy film electrode. The surface morphology, composition, phase constituent, structure and performance of the electrode were characterized by means of surface profilometer, SEM-EDS, XRD and electrochemical workstation. The results show that the electrode surface is rough, the constituent elements are evenly distributed, the film thickness is about 2.40 μm, and the film is amorphous. The electrode showed good oxygen evolution performance and good stability in the alkaline solution. Under the condition of current density of 10.0 mA/cm2, the overpotential was 360 mV, the Tafel slope was 73.45 mV/dec. Under the condition of overpotential of 360 mV, the current density was not significantly attenuated after continuous use for 24 hours. The results of cyclic voltammetry and electrochemical impedance analysis show that due to the improved intrinsic catalytic activity, the film electrode have electrocatalytic oxygen evolution performance better than that of the noble metal oxide RuO2 (over potential 409 mV, Tafel slope 94.18 mV/dec).

Key words:  metallic materials      high-entropy thin film electrode      oxygen evolution performance      magnetron sputtering      amorphous microcrystalline     
Received:  16 June 2020     
ZTFLH:  TB430.4030  
Fund: the 333 Projects of Jiangsu Province(BRA2018045);Natural Science Foundation of Jiangsu Province(BK20180264)
About author:  FANG Feng, Tel: (025)52090630, E-mail: fangfeng@seu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.233     OR     https://www.cjmr.org/EN/Y2021/V35/I3/193

Base pressure

/Pa

Sputtering pressure

/Pa

Ar2 flow rate

/sccm

Sputtering power

/W

Deposition time

/h

6×10-40.530801
Table 1  Preparation parameters of high entropy thin film electrode
Fig.1  Surface SEM image (a), EDS energy spectrum (b) and EDS-mapping (c) of high entropy thin film electrode
Fig.2  SEM images of the substrate (a) and the high entropy thin film electrode surface (b)
Fig.3  Profile curve of the high-entropy thin film electrode (a) and the substrate (b)
Fig.4  EDS-mapping of cross-section of high entropy thin film electrode
Fig.5  XRD patterns of high entropy thin film electrode and substrate (a) and grazing incident X-ray diffraction (GIXRD) patterns of high entropy thin film electrode (b)
Fig.6  LSV curves of electrode (a) (inset: LSV curve normalized according to electrochemical activity area); Tafel slopes (b); the relationship between the current density difference and the scanning rate (c); EIS spectra (d) (symbols: experimental data; solid lines: simulated data; inset: equivalent circuit)
Materialsη10/mVb/mV·dec-1Cdl/mF·cm-2ECSA/cm2Rf/Ω·cm2Rs/Ω·cm2Rct/Ω·cm2
FeCoNiMoCr360.473.450.8320.6320.633.0220.28
RuO2409.494.181.7142.7542.752.9232.56
Ti Substrate575.4222.440.6716.6316.632.5712490
Table 2  Kinetic parameters of oxygen evolution reaction of electrode
Fig.7  Chronoamperometry curve of high entropy thin film electrode at 360 mV
1 Suen N T, Hung S F, Quan Q, et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives [J]. Chem. Soc. Rev., 2017, 46: 337
2 Song J J, Wei C, Huang Z F, et al. A review on fundamentals for designing oxygen evolution electrocatalysts [J]. Chem. Soc. Rev., 2020, 49: 2196
3 Trotochaud L, Boettcher S W. Precise oxygen evolution catalysts: status and opportunities [J]. Scr. Mater., 2014, 74: 25
4 Özer E, Spöri C, Reier T, et al. Iridium(1 1 1), iridium(1 1 0), and ruthenium(0 0 0 1) single crystals as model catalysts for the oxygen evolution reaction: insights into the electrochemical oxide formation and electrocatalytic activity [J]. ChemCatChem, 2017, 9: 597
5 Lee Y, Suntivich J, May K J, et al. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions [J]. J. Phys. Chem. Lett., 2012, 3: 399
6 Wu Z P, Lu X F, Zang S Q, et al. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction [J]. Adv. Funct. Mater., 2020, 30: 1910274
7 Zhang W R, Liaw P K, Zhang Y. Science and technology in high-entropy alloys [J]. Sci. China Mater., 2018, 61: 2
8 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
9 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
10 Jin Z Y, Lv J, Jia H L, et al. Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments [J]. Small, 2019, 15: 1904180
11 Yu X X, Yu Z Y, Zhang X L, et al. Highly disordered cobalt oxide nanostructure induced by sulfur incorporation for efficient overall water splitting [J]. Nano Energy, 2020, 71: 104652
12 Shi J L, Sheng M Q, Wu Q, et al. Preparation of electrode materials of amorphous Co-W-B/carbon cloth composite and their electro-catalytic performance for electrolysis of water [J]. Chin. J. Mater. Res., 2020, 34: 263
施嘉伦, 盛敏奇, 吴琼等. 非晶Co-W-B/碳布复合电极材料的制备及其电解水催化性能 [J]. 材料研究学报, 2020, 34: 263
13 Fang M, Han D, Xu W B, et al. Surface-guided formation of amorphous mixed-metal oxyhydroxides on ultrathin MnO2 nanosheet arrays for efficient electrocatalytic oxygen evolution [J]. Adv. Energy Mater., 2020, 10: 2001059
14 Wang T Y, He Q F, Zhang J Y, et al. The controlled large-area synthesis of two dimensional metals [J]. Mater. Today, 2020, 36: 30
15 Glasscott M W, Pendergast A D, Goines S, et al. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis [J]. Nat. Commun., 2019, 10: 2650
16 Zhang G L, Ming K S, Kang J L, et al. High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction [J]. Electrochim. Acta, 2018, 279: 19
17 Huo W Y, Liu X D, Tan S Y, et al. Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films [J]. Appl. Surf. Sci., 2018, 439: 222
18 Bockris J O M, Otagawa T. The electrocatalysis of oxygen evolution on perovskites [J]. J. Electrochem. Soc., 1984, 131: 290
19 Subbaraman R, Tripkovic D, Chang K C, et al. Trends in activity for the water electrolyser reactions on 3d M(Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts [J]. Nat. Mater., 2012, 11: 550
20 Choe S, Lee B S, Cho M K, et al. Electrodeposited IrO2/Ti electrodes as durable and cost-effective anodes in high-temperature polymer-membrane-electrolyte water electrolyzers [J]. Appl. Catal., 2018, 226B: 289
21 Krstić V, Pešovski B. Reviews the research on some dimensionally stable anodes (DSA) based on titanium [J]. Hydrometallurgy, 2019, 185: 71
22 Li D, Tang J Y, Zhou X Z, et al. Electrochemical degradation of pyridine by Ti/SnO2–Sb tubular porous electrode [J]. Chemosphere, 2016, 149: 49
23 Dai W J, Lu T, Pan Y. Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy [J]. J. Power Sources, 2019, 430: 104
24 Jian J. Synthesis of nano-sulfures/oxides and their research and application in electrocatalytic water splitting [D]. Jilin: Jilin University, 2019
菅娟. 纳米硫/氧化物的合成及其在电催化水裂解中的研究和应用 [D]. 吉林: 吉林大学, 2019
25 Ren Z D. A study of magnetron-sputtering alloy electrodes and their electrocatalysis [D]. Wuhan: Wuhan University, 2014
任占冬. 磁控溅射制备合金电极及相关电催化研究 [D]. 武汉: 武汉大学, 2014
26 Zhang D D, Meng L J, Shi J Y, et al. One-step preparation of optically transparent Ni-Fe oxide film electrocatalyst for oxygen evolution reaction [J]. Electrochim. Acta, 2015, 169: 402
27 Wang T Y, He Q F, Zhang J Y, et al. The controlled large-area synthesis of two dimensional metals [J]. Mater. Today, 2020, 36: 30
28 Inamdar A I, Chavan H S, Pawar S M, et al. NiFeCo oxide as an efficient and sustainable catalyst for the oxygen evolution reaction [J]. Int. J. Energ. Res., 2020, 44: 1789
29 Xu J Y, Murphy S, Xiong D H, et al. Cluster beam deposition of ultrafine cobalt and ruthenium clusters for efficient and stable oxygen evolution reaction [J]. ACS Appl. Energy Mater., 2018, 1: 3013
30 Yang Y, Kao L C, Liu Y Y, et al. Cobalt-doped black TiO2 nanotube array as a stable anode for oxygen evolution and electrochemical wastewater treatment [J]. ACS Catal., 2018, 8: 4278
31 Dai W J, Lu T, Pan Y. Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy [J]. J. Power Sources, 2019, 430: 104
32 García-Osorio D A, Jaimes R, Vazquez-Arenas J, et al. The kinetic parameters of the oxygen evolution reaction (OER) calculated on inactive anodes via EIS transfer functions: ·OH formation [J]. J. Electrochem. Soc., 2017, 164: E3321
33 Li D L, Batchelor-McAuley C, Compton R G. Some thoughts about reporting the electrocatalytic performance of nanomaterials [J]. Appl. Mater. Today, 2020, 18: 100404
34 Voiry D, Chhowalla M, Gogotsi Y, et al. Best practices for reporting electrocatalytic performance of nanomaterials [J]. ACS Nano, 2018, 12: 9635
35 Zhao X H, Xue Z M, Chen W J, et al. Ambient fast, large-scale synthesis of entropy-stabilized metal-organic framework nano-sheets for electrocatalytic oxygen evolution [J]. J. Mater. Chem., 2019, 7A: 26238
36 Chen P Z, Tong Y, Wu C Z, et al. Surface/interfacial engineering of inorganic low-dimensional electrode materials for electrocatalysis [J]. Acc. Chem. Res., 2018, 51: 2857
37 Xiao H, Shin H, Goddard W A III. Synergy between Fe and Ni in the optimal performance of (Ni, Fe)OOH catalysts for the oxygen evolution reaction [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 5872
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!