Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (4): 255-260    DOI: 10.11901/1005.3093.2016.381
ARTICLES Current Issue | Archive | Adv Search |
Photocatalytic Reduction Properties of Palladium and Nitrogen Co-Doped TiO2 Thin Films
Haiyang CHEN, Fei HE, Xuhai ZHANG, Qiyue SHAO, Feng FANG()
School of Materials Science and Engineering,Southeast University,Nanjing 211189,China
Cite this article: 

Haiyang CHEN, Fei HE, Xuhai ZHANG, Qiyue SHAO, Feng FANG. Photocatalytic Reduction Properties of Palladium and Nitrogen Co-Doped TiO2 Thin Films. Chinese Journal of Materials Research, 2017, 31(4): 255-260.

Download:  HTML  PDF(1886KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Palladium and nitrogen co-doped TiO2 films were prepared by DC magnetron sputtering and then characterized in terms of surface morphology, absorption spectra and photocatalytic reduction property under visible light etc.. The results show that the N-TiO2 films are composed of anatase while they turn to be composed of rutile gradually due to the presence of Pd. After being co-doped with Pd, the films become loose with rougher surface. The introduction of Pd to N-TiO2 thin films increases its effective absorption of visible light, as well as enhances its ability to capture electrons and separate photo-generated electron-hole pairs effectively. The photocatalytic reduction property of the films declines with the increasing Pd amount. Among others, the Pd-N-TiO2 films with 0.4% (atomic fraction) Pd have the best photocatalytic reduction property.

Key words:  inorganic non-metallic materials      photocatalysis      magnetron sputtering      TiO2     
Received:  04 July 2016     
ZTFLH:  TB43  
Fund: Supported by National Natural Science Foundation of China (Nos.51371050 & 51302038), Six Talent Peaks Project in Jiangsu Province, China (No.2015-XCL-004)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.381     OR     https://www.cjmr.org/EN/Y2017/V31/I4/255

Sputtering power of Pd target/W Sputtering power of Ti target/W Partial pressure of N2/% Substrate temperature/℃ Sputtering pressure/Pa Deposition time/h
7 200 83.3 250 0.5 2
10
13
Table 1  Process condition of the Pd-N-TiO2 films deposited with various amount of Pd
Fig.1  Surface SEM images of the Pd-N-TiO2 films deposited with various amount of Pd (atomic fraction) (a) 0, (b) 0.4%, (c) 1.9%, (d) 7.3%
Fig.2  XRD patterns of Pd-N-TiO2 sample and N-TiO2 sample
Fig.3  XPS deconvoluted Pd 3d spectra of the Pd-N-TiO2 films deposited with various amount of Pd (atomic fraction) (a) 0.4%,(b) 1.9%,(c) 7.3%
Fig.4  UV-vis absorption spectra of the Pd-N-TiO2 films deposited with various amount of Pd (atomic fraction)
Fig.5  Cr (VI) residue percentage versus visible-light illumination time of the Pd-N-TiO2 films deposited with various amount of Pd (atomic fraction)
Fig.6  XPS deconvoluted Ti2p spectra of the Pd-N-TiO2 films deposited with various amount of Pd (atomic fraction) (a) 0.4%, (b) 1.9%, (c) 7.3%
[1] Lu S J, Wang Y Y, Teng Y G, et al.Heavy metal pollution and ecological risk assessment of the paddy soils near a zinc-lead mining area in Hunan[J]. Environ. Monitor. Manage., 2015, 187: 627
[2] Yuan X Y, Zhang L J, Li J Z, et al.Sediment properties and heavy metal pollution assessment in the river, estuary and lake environments of a fluvial plain, China[J]. Catena, 2014, 119: 52
[3] Islam M S, Ahmed M K, Raknuzzaman M, et al.Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country[J]. Ecol. Ind., 2015, 48: 182
[4] Fu F L, Wang Q.Removal of heavy metal ions from wastewaters: A review[J]. J. Environ. Manage., 2011, 92: 407
[5] Erdem E, Karapinar N, Donat R.The removal of heavy metal cations by natural zeolites[J]. J. Colloid Interface Sci., 2004, 280: 309
[6] Liang S, Feng N C, Guo X Y.Progress of heavy metal wastewater treatment by biosorption[J]. Technol. Water Treat., 2009, 35(3): 13(梁莎, 冯宁川, 郭学益. 生物吸附法处理重金属废水研究进展[J]. 水处理技术, 2009, 35(3): 13)
[7] Sun Q, Li H, Zheng S L, et al.Characterizations of nano-TiO2/diatomite composites and their photocatalytic reduction of aqueous Cr (VI)[J]. Appl. Surf. Sci., 2014, 311: 369
[8] We Y T, Liu S Z, Zhang Q, et al.Partially conjugated polyvinyl chloride-modified TiO2 nanoparticles for efficient visible-light-driven photocatalytic reduction of aqueous Cr(VI)[J]. Mater. Lett., 2016, 163: 262
[9] Xu B, Wang S L, Li L Q, et al.Photocatalytic effect of Zn/ZnO nano-composite[J]. J. Funct. Mater., 2010, 41: 307(徐波, 王树林, 李来强等. 纳米Zn/ZnO复合结构的光催化活性[J]. 功能材料, 2010, 41: 307)
[10] Huang J Y, Liu G G, Zhang W H, et al.Progress on photocatalytic reduction of heavy metal ions in wastewater[J]. Environ. Sci. Technol., 2008, 31(12): 104(黄锦勇, 刘国光, 张万辉等. TiO2光催化还原重金属离子的研究进展[J]. 环境科学与工程, 2008, 31(12): 104)
[11] Yoneyama H, Yamashita Y, Tamura H.Heterogeneous photocatalytic reduction of dichromate on n-type semiconductor catalysts[J]. Nature, 1979, 282: 817
[12] Qui?ones C, Ayala J, Vallejo W.Methylene blue photoelectrodegradation under UV irradiation on Au/Pd-modified TiO2 films[J]. Appl. Surf. Sci., 2010, 257: 367
[13] Fang F, Li Q, Shang J K.Enhanced visible-light absorption from Ag2O nanoparticles in nitrogen-doped TiO2 thin films[J]. Surf. Coat. Technol., 2011, 205: 2919
[14] Chen H, Shao Y, Xu Z Y, et al.Effective catalytic reduction of Cr(VI) over TiO2 nanotube supported Pd catalysts[J]. Appl. Catal.: Environ., 2011, 105B: 255
[15] Zhang L L, Gao H J, Liao Y W.Enhancement of photocatalytic activity of TiO2 with cross-linked poly (amphoteric ionic liquid)[J]. Chin. J. Mater. Res., 2016, 30: 307(张娈娈, 高和军, 廖运文. 交联聚两性离子液基材料增强TiO2光催化性能的研究[J]. 材料研究学报, 2016, 30: 307)
[16] Jagadale T C, Takale S P, Sonawane R S, et al.N-Doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol-gel method[J]. J. Phys. Chem., 2008, 112C: 14595
[17] Zhang Y C, Yang M, Zhang G S, et al. HNO3-involved one-step low temperature solvothermal synthesis of N-doped TiO2 nanocrystals for efficient photocatalytic reduction of Cr(VI) in water [J]. Appl. Catal.: Environ., 2013, 142-143B: 249
[18] Wu P G, Ma C H, Shang J K.Effects of nitrogen doping on optical properties of TiO2 thin films[J]. Appl. Phys., 2005, 81A: 1411
[19] Di Valentin C, Pacchioni G, Selloni A, et al.Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations[J]. J. Phys. Chem., 2005, 109B: 11414
[20] Hao D, Jiang C H, Yang Z M, et al.The preparation of N-doped TiO2 and its photocatalytic property[J]. Chin. J. Mater. Res., 2013, 27: 247)(郝栋, 姜春海, 杨振明等. N掺杂TiO2的制备和光催化性能[J]. 材料研究学报, 2013, 27: 247)
[21] Li Q, Liang W, Shang J K.Enhanced visible-light absorption from PdO nanoparticles in nitrogen-doped titanium oxide thin films[J]. Appl. Phys. Lett., 2007, 90: 063109
[22] Lee H, Shin M, Lee M, et al.Photo-oxidation activities on Pd-doped TiO2 nanoparticles: critical PdO formation effect[J]. Appl. Catal.: Environ., 2015, 165B: 20
[23] He F, Wang K, Zhou X F, et al. Synthesis and photocatalytic properties of Ag-modified N-doped TiO2 thin films[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(1): 27(何菲,王科,周雪峰等. 银修饰氮掺杂TiO2薄膜的制备及光催化性能研究[J]. 真空科学与技术学报,2015,35(1): 27)
[24] Sato S.Photocatalytic activity of NOx-doped TiO2 in the visible light region[J]. Chem. Phys. Lett., 1986, 123: 126
[25] Asahi R, Morikawa T, Ohwaki T, et al.Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293: 269
[26] Zhang Z, Mestl G, Kn?zinger H, et al.Effects of calcination program and rehydration on palladium dispersion in zeolites NaY and 5A[J]. Appl. Catal., 1992, 89A: 155
[27] Brun M, Berthet A, Bertolini J C.XPS, AES and Auger parameter of Pd and PdO[J]. J. Elec. Spectrosc. Relat. Phenom., 1999, 104: 55
[28] Panpranot J, Kontapakdee K, Praserthdam P.Effect of TiO2 crystalline phase composition on the physicochemical and catalytic properties of Pd/TiO2 in selective acetylene hydrogenation[J]. J. Phys. Chem., 2006, 110B: 8019
[29] Zhang L D, Mou J M.Nanomaterials and Nanostructures [M]. Beijing: Science Press, 2001(张立德, 牟季美. 纳米材料和纳米结构 [M]. 北京: 科学出版社, 2001)
[30] Swanepoel R.Determination of the thickness and optical constants of amorphous silicon[J]. J. Phys.: Sci. Instrum., 1983, 16E: 1214
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[9] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[13] ZHANG Peng, HUANG Dong, ZHANG Fuquan, YE Chong, WU Xiao, WU Huang. Effect of Graphitization Degree of Mesophase Pitch-based Carbon Fibers on Carbon Fiber/Al Interface Damage[J]. 材料研究学报, 2022, 36(8): 579-590.
[14] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[15] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
No Suggested Reading articles found!