Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (12): 913-920    DOI: 10.11901/1005.3093.2015.12.913
Orginal Article Current Issue | Archive | Adv Search |
Fabrication of a Three-dimensional Nanoporous Cu-Ti Alloy with Excellent Electrochemical Capacitance Performance
Jie LIU1,2,3,Xuyan LIU2,3,Fang LIU2,3,Fei WANG1,2,3,Deng PAN2,3,**()
1. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2. School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
3. Metal Based Advanced Electric Power Materials Laboratory, University of Shanghai for Science and Technology, Shanghai 200093, China
Cite this article: 

Jie LIU,Xuyan LIU,Fang LIU,Fei WANG,Deng PAN. Fabrication of a Three-dimensional Nanoporous Cu-Ti Alloy with Excellent Electrochemical Capacitance Performance. Chinese Journal of Materials Research, 2015, 29(12): 913-920.

Download:  HTML  PDF(5910KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Thin film of nanoporous Cu-Ti alloy as a promising electrode material for electrochemical capacitors was prepared by a two-step process, i.e. a thin film of Cu35Ti65 was firstly deposited on silicon substrate by magnetron sputtering process with Cu40Ti60 alloy as target , and then the sputtered film of Cu35Ti65 alloy was dealloyed in 0.13 mol/L HF solution for 12 h to prepair the isolated thin film of nanoporous Cu-Ti alloy. Electrodes made of the nanoporous Cu-Ti alloy exhibited excellent electrochemical capacitance performance with a specific capacitance of 8.96 mFcm-2 in 1 mol/L Na2SO4 solution. Furthermore, the nanoporous Cu-Ti alloy electrode showed remarkable chemical stability by cyclically charging and discharging. The excellent electrochemical performance of the nanoporous Cu-Ti alloy can be ascribed to the high specific surface area of the nanoporous structure.

Key words:  metal materials      nanoporous Cu-Ti      magnetron sputtering      dealloying      electrochemical capacitance      electrochemical capacitor     
Received:  12 May 2015     
Fund: *Supported by the Education Commission Innovation Project of Shanghai No.14YZ082, and the Natural Science Foundation of Science and Technology Commission of Shanghai No.14ZR1428100

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.12.913     OR     https://www.cjmr.org/EN/Y2015/V29/I12/913

No. Samples Cu Ti
(a) Cu35Ti65 35.02 64.98
(b) NPCu/Ti-8 h 95.02 4.98
(c) NPCu/Ti-12 h 98.16 1.84
Table 1  EDAX element analysis for (a) sputtered Cu35Ti65 alloy film, (b) NPCu/Ti alloy film dealloying for 8 h and (c) 12 h (atom fraction, %)
Fig.1  SEM images: (a) section and (b) surface of the Cu35Ti65 alloy, (c) 8 h and 12 h dealloying NPC/Ti and the pore distribution, (e) detail of the 12 h dealloying NPC/Ti
Fig.2  EDAX element analysis for sputtered Cu35Ti65 alloy film (a), NPCu/Ti alloy film dealloyed for 8 h (b) and 12 h (c)
Fig.3  XRD patterns for sputtered Cu35Ti65 alloy film (a), NPCu/Ti alloy film dealloyed for 8 h (b) and 12 h (c) and binary alloy phase diagram for copper-titanium alloy (d)
Samples 100 mV/s 250 mV/s 400 mV/s 500 mV/s 600 mV/s
NPCu/Ti-8 h 8.47 8.10 7.79 7.46 6.98
NPCu/Ti-12 h 8.96 8.65 8.31 8.06 7.85
Table 2  Average specific capacitance of NPCu/Ti dealloyed for 8 h and 12 h at various scan rates (C/mFcm-1)
Capacitor materials Specific capacitance
(C/mFcm-1)
Specific capacitance
(C/Fg-1)
Reference
Nanoporous TiO2 1.05 [21]
Nanoporous copper/Mangenese-dioxide 280 [34]
Composite NiO@rGO 881 [35]
Nanoporous nickel/nickel hydroxide 5.0 [36]
Porous carbon 350 [37]
Nanoporous copper 8.96 813 This work
Table 3  Comparison of specific capacitance of different nanoporous-material-based capacitors
Fig.4  CV curves for the NPCu/Ti after dealloyed in 0.13 mol/L HF for 8 h and 12 h at a scanning rate of 250 mVs-1(a), the NPCu/Ti dealloyed for 8 h at various scan rates (b) and the NPCu/Ti dealloy ed for 12 h at various scan rates (c) and area capacitance of NPCu/Ti-8 h and NPCu/Ti-8 h measured as a function of scan rate (d)
Fig.5  Galvanostatic charge-discharge curves of NPCu/Ti-8 h and NPCu/Ti-12 h collected at a current density of 50 μA/cm2 (a), NPCu/Ti-8 h collected at various current densities (b) and NPCu/Ti-12 h collected at various current densities (c) and cycle performance of NPC-12 h and G-NPC-12 h at a current density of 50 μA/cm2 (d)
Samples 50 μA/cm2 100 μA/cm2 200 μA/cm2 300 μA/cm2
NPCu/Ti-8 h 8.30 8.25 7.93 7.90
NPCu/Ti-12 h 8.91 8.26 8.12 8.03
Table 4  Average specific capacitance of NPCu/Ti dealloyed for 8 h and 12 h at various current densities (C/mFcm-1)
Fig.6  Nyquist plots for NPCu/Ti-8 h and NPCu/Ti-12 h electrodes at an open circuit state and the corresponding equivalent circuit in the inset
Samples Rs / Ωcm2 Rc / Ωcm2 CPE / μFcm-2
NPCu/Ti-8 h 3.35 100.02 30.26
NPCu/Ti-12 h 3.02 86.36 22.31
Table 5  EIS fitting results for NPCu/Ti-8 h and NPCu/Ti-12 h electrodes
1 S. C. Zhang, Y. Xing, T. Jiang, Z. J. Du, F. Li, L. He, W. B. Liu, A three-dimensional tin-coatednanoporous copper for lithium-ion battery anodes, Journal of Power Sourse, 196(12), 6195(2011)
2 M. Toupin, T. Brousse, D. Belanger, Storage mechanism of MnO2 electrode used in aqueouselectrochemicalcapacitor, Journalof Materials Chemistry, 16(1), 3148(2004)
3 T. Huang, C. S. Dong, Y. Gu, M. L. Zhong, L. Li, The mechanism of three-dimensional manganese-based nanoporous structure formation by laser deposition coupled with dealloying, Material Letters, 95(8), 30(2013)
4 T. Cottineau, M. Toupin, T. Delahaye, Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors, Applied Physics A: Materials Science Processing, 82(12), 599(2006)
5 HU Fei, ZHAO Chong, WEN Siyi, XIONG Wei, Investigation on the formation of nanoporous layers on TiNb alloys by ultrafast anodization, Journal of Functional Meterials, 8(3), 13(2015)
5 (胡飞, 赵翀, 文思逸, 熊伟, 超快阳极氧化TiNb合金制备复合纳米多孔氧化膜的研究, 功能材料, 8(3), 13(2015))
6 P. Poizot, S. Laruelle, S. Grugeon, Nano-sized transitionmetal oxides as negative-electrode materials for lithium-ion batteries, Nature, 407(12), 496(2001)
7 K. N. Nam, D. P. Kim, J. Yoo, Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes, Science, 312, 885(2006)
8 C. Ban, Z. Wu, D. T. Gillaspie, Nanostructured Fe3O4/SWNT electrode: binder-free and high-rate Li-ion anode, Advanced Materials, 22(5), 145(2010)
9 W. F. Wei, X. W. Cui, W. X. Chen, Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chemical Society Reviews, 40, 1697(2010)
10 C. C. H, Y. T. Wu, K. H. Chang, Low-temperature hydrothermal ynthesis of Mn3O4 and MnOOH single crystals determinant influence of oxidants, Chemistry of Materials, 20(6), 2890(2008)
11 P. Meduri, C. Pendyala, V. Kumar, Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries, Nano Letters, 9(3), 612(2009)
12 WANG Lei, ZHANG Zhao, LI Gang, LI Zhongkai, Electrochemical preparation and formation mechanism of nanoporous anodic membrane on Ti6Al4V surface, Journal of Functional Metaials, 6(15), 1053(2009)
12 (王磊, 张昭, 李纲, 李仲恺, Ti6Al4V表面纳米多孔氧化膜的电解制备及形成机理研究, 功能材料, 6(15), 1053(2009))
13 X. L. Kong, L. C. L.Huang, C. M. Hsu, High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis, Analytical Chemistry, 77(1), 259(2005)
14 F. Adams, V. L. Van, R. Barrett, Advanced analytical techniques: platform for nano materials science, Spectrochimica Acta Part B: Atomic Spectroscopy, 60(18), 13(2005)
15 R. Seshadri, F. C. Meldrum, Bioskeletons as templates for ordered macroporous structures, Advanced Materials, 12(10), 1149(2000)
16 R. Zeis, T. Lei, K. Sieradzki, Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold, Journal of Catalysis, 253(10), 132(2008)
17 X. Lang, A. Hirata, C. Fujita, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nature Nanotechnology, 6(4), 232(2011)
18 ZHANG Xuhai, DONG Xiaozhen, YANG Chunlei, ZENG Yuqiao, JIANG Jianqing, Multicomponent nanoporous palladium with enhanced catalytic activity prepared by dealloying metallic glass, Journal of Functional Materials, 24(12), 3634(2013)
18 (张旭海, 董小真, 杨春雷, 曾宇乔, 蒋建清, 金属玻璃脱合金制备高催化性能的多元掺杂纳米多孔Pd, 功能材料, 24(12), 3634(2013))
19 L. G. Xue, Z. H. Fu, Y. Yao, T. Huang, A. S. Yu, Three-dimensional porous Sn-Cu alloy anode for lithium-ion batteries, Electrochimica Acta, 55(8), 7310(2010)
20 M. Zhang, Z. D. Cui, X. J. Yang, Q. Wei, D. L. Zhu, CdS sensitized nanoporous TiO2/CuO layer prepared by dealloying of Ti-Cu amorphous alloy, Journal of Alloy and Compounds, 80(11), 131(2012)
21 H. Zhou, Y. Zhong, Z. S. He, L. Y. Zhang, J. M. Wang, J. Q. Zhang, C. N. Cao, Three-dimensional nanoporous TiO2 network films with excellent electrochemical capacitance performance, Journal of Alloy and Compounds, 59(7), 1(2014)
22 J. Y. Brun, S. J.Hamar-Thibault, C. H. Allibert, Cu-Ti and Cu-Ti-Al solid state phase-equilibria in the Cu-rich region, Zeitschrift Fur Metallkunde, 74(8), 525(1983)
23 W. A. Soffa, D. E. Laughlin, High-strength age hardening copper-titanium alloys redivivus, Progress in Materials Science, 49, 347(2004)
24 WEI Huan, WEI Yinghui, HOU Lifeng, The phase transition and applications of age hardening copper-titanium alloys, Journal of Functional Materials, 10(12), 1001(2015)
24 (卫欢, 卫英慧, 侯利锋, 时效硬化铜钛合金的相变应用, 功能材料, 10(12), 1001(2015))
25 H. B. Lu, Y. Li, F. H. Wang, Synthesis of porous copper from nanocrystalline two-phase Cu-Zr film by dealloying, Scripta Materialia, 56, 165(2007)
26 H. B. Lu, Y. Li, F. H. Wang, Influence of composition on corrosion behavior of as-cast Cu-Zr alloys in HCl, Electrochimica Acta, 52, 474(2006)
27 H. J. Li, W. L. Wang, F. F. Pan, X. D. Xin, Q. Q. Chang, X. M. Liu, Synthesis of single-crystalline α-MnO2 nanotubes and structural characterization by HRTEM, Materials Science and Engineering, 176, 1054(2011)
28 B. E. Conway, Transition from “supercapaeitor” to “battery” behavior in electrochemical energy storage, Journal of the Electrochemistry Society, 138(6), 1539(1991)
29 FENG Xiaomiao, YAN Zhenzhen, CHEN Ningna, Synthesis of hollow urchin-like MnO2 via a facile hydrothermal method and its application in supercapacitors, Journal of Inorganic Chemistry, 11(5), 2509(2014)
29 (冯晓苗, 闫真真, 陈宁娜, 空心海胆状二氧化锰的制备及其在超级电容器中的应用, 无机化学学报, 11(5), 2509(2014))
30 H. Y. Lee, G. B. Goodenough, Supercapacitor behavior with KCl electrolyte, Journal of Solid State Chemistry, 144, 220(1999)
31 X. Zhang, X. Z. Sun, H. T. Zhang, D. C. Zhang, Y. W. Ma, Microwave-assisted reflux rapid synthesis of MnO2 nanostructures and their application in supercapacitors, Electrochimica Acta, 87(6), 637(2013)
32 J. Wang, D. F. Thomas, A. Chen, Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks, Analytical Chemistry, 80(4), 997(2008)
33 S. J. Bao, C. M. Li, H. L. Li, H. T.Luongc John, Morphology and electrochemistry of LiMn2O4 optimized by using different Mn-sources, Journal of Power Sources, 164(5), 885(2007)
34 LIU Jiangyun, ZHOU Jun, LIU Li, QIN Chunling, ZHAQ Weimin, Preparation and specific capacitance performance of a new nanoporous copper/manganese dioxide composite electrode material, Journal of Hebei University of Technology, 44(4), 1(2015)
34 (刘江云, 周君, 刘丽, 秦春玲, 赵维民, 新型纳米多孔铜/二氧化锰复合电极材料的制备及其比电容特性, 河北工业大学学报, 44(4), 1(2015))
35 H. M. Zhang, D. Guo, J. Zhu, Q. H. Li, L. B. Chen, T. H. Wang, A layer-by-layer deposition strategy of fabricating NiO@rGO composites for advanced electrochemical capacitors, Electrochimica Acta, 152(12), 378(2015)
36 H. J. Qiu, L. Peng, X. Li, Y. Wang, Enhanced supercapacitor performance by fabricating hierarchical nanoporous nickel/nickel hydroxide structure, Materials Letters, 158(6), 366(2015)
37 L. L. Zhang, R. Zhou, X. S. Zhao, Graphene-based materials as supercapacitors electrodes, Journal of Materials Chemistry, 20(12), 83(2010)
[1] LI Qiao, NIU Ben, ZHANG Ruiqian, LIU Huiqun, LIN Guoqiang, WANG Qing. Effect of Ta/Zr on High-temperature Microstructural Stability of Warm-rolled Sheets of Fe-Cr-Al-Mo-Nb Alloy[J]. 材料研究学报, 2023, 37(6): 423-431.
[2] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[3] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[4] XIAO Han, ZHOU Yuhang, CHEN Lei, ZHANG Xiongchao, CUI Yunxin, XIONG Chi. Effect of Isothermal Time on Microstructure and Properties of Thixo-extruded Tin Bronze Bushing[J]. 材料研究学报, 2022, 36(9): 641-648.
[5] HE Yufeng, WANG Li, WANG Dong, WANG Shaogang, LU Yuzhang, GU Ashan, SHEN Jian, ZHANG Jian. Effect of Hot Isostatic Pressing on Microstructure of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2022, 36(9): 649-659.
[6] ZHANG Peng, HUANG Dong, ZHANG Fuquan, YE Chong, WU Xiao, WU Huang. Effect of Graphitization Degree of Mesophase Pitch-based Carbon Fibers on Carbon Fiber/Al Interface Damage[J]. 材料研究学报, 2022, 36(8): 579-590.
[7] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
[8] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[9] ZHANG Zeling, WANG Shiqi, XU Bangli, ZHAO Yuhao, ZHANG Xuhai, FANG Feng. Electrocatalytic Oxygen Evolution Performance of High Entropy FeCoNiMoCr Alloy Thin Film Electrode[J]. 材料研究学报, 2021, 35(3): 193-200.
[10] SONG Guihong, LI Xiuyu, LI Guipeng, DU Hao, HU Fang. Thermoelectric Properties of Mg-rich Mg3Bi2 Films Prepared by Magnetron Sputtering[J]. 材料研究学报, 2021, 35(11): 835-842.
[11] XIE Mingling, ZHANG Guang'an, SHI Xing, TAN Xi, GAO Xiaoping, SONG Yuzhe. Anti-oxidization and Electronic Properties of Ti Doped MoS2 Films[J]. 材料研究学报, 2021, 35(1): 59-64.
[12] GU Wei, ZHANG Zhijian, YANG Jiaquan. Effect of Preparation Process on Magnetic Properties of Amorphous Magnetic Powder Cores[J]. 材料研究学报, 2020, 34(4): 291-298.
[13] TAN Xi, SONG Yuzhe, SHI Xin, QIANG Jin, WEI Tingxuan, LU Qihai. Magnetization Reversal Field and Magneto-Resistor of Spin Valve[J]. 材料研究学报, 2020, 34(4): 272-276.
[14] WANG Shiqi,HUO Wenyi,XU Zhengchao,ZHANG Xuhai,ZHOU Xuefeng,FANG Feng. Fabrication of Films of Co Doped TiO2 Nanotube Array and their Photocatalytic Reduction Performance[J]. 材料研究学报, 2020, 34(3): 176-182.
[15] CHEN Feng, ZHOU Yang, CHEN Yannan, LIN Zongling, QIN Fengxiang. Fabrication of Nano-porous Co by Dealloying for Supercapacitor and Azo-dye Degradation[J]. 材料研究学报, 2020, 34(12): 905-914.
No Suggested Reading articles found!