|
|
Fabrication of a Three-dimensional Nanoporous Cu-Ti Alloy with Excellent Electrochemical Capacitance Performance |
Jie LIU1,2,3,Xuyan LIU2,3,Fang LIU2,3,Fei WANG1,2,3,Deng PAN2,3,**( ) |
1. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 2. School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 3. Metal Based Advanced Electric Power Materials Laboratory, University of Shanghai for Science and Technology, Shanghai 200093, China |
|
Cite this article:
Jie LIU,Xuyan LIU,Fang LIU,Fei WANG,Deng PAN. Fabrication of a Three-dimensional Nanoporous Cu-Ti Alloy with Excellent Electrochemical Capacitance Performance. Chinese Journal of Materials Research, 2015, 29(12): 913-920.
|
Abstract Thin film of nanoporous Cu-Ti alloy as a promising electrode material for electrochemical capacitors was prepared by a two-step process, i.e. a thin film of Cu35Ti65 was firstly deposited on silicon substrate by magnetron sputtering process with Cu40Ti60 alloy as target , and then the sputtered film of Cu35Ti65 alloy was dealloyed in 0.13 mol/L HF solution for 12 h to prepair the isolated thin film of nanoporous Cu-Ti alloy. Electrodes made of the nanoporous Cu-Ti alloy exhibited excellent electrochemical capacitance performance with a specific capacitance of 8.96 mFcm-2 in 1 mol/L Na2SO4 solution. Furthermore, the nanoporous Cu-Ti alloy electrode showed remarkable chemical stability by cyclically charging and discharging. The excellent electrochemical performance of the nanoporous Cu-Ti alloy can be ascribed to the high specific surface area of the nanoporous structure.
|
Received: 12 May 2015
|
Fund: *Supported by the Education Commission Innovation Project of Shanghai No.14YZ082, and the Natural Science Foundation of Science and Technology Commission of Shanghai No.14ZR1428100 |
1 | S. C. Zhang, Y. Xing, T. Jiang, Z. J. Du, F. Li, L. He, W. B. Liu, A three-dimensional tin-coatednanoporous copper for lithium-ion battery anodes, Journal of Power Sourse, 196(12), 6195(2011) | 2 | M. Toupin, T. Brousse, D. Belanger, Storage mechanism of MnO2 electrode used in aqueouselectrochemicalcapacitor, Journalof Materials Chemistry, 16(1), 3148(2004) | 3 | T. Huang, C. S. Dong, Y. Gu, M. L. Zhong, L. Li, The mechanism of three-dimensional manganese-based nanoporous structure formation by laser deposition coupled with dealloying, Material Letters, 95(8), 30(2013) | 4 | T. Cottineau, M. Toupin, T. Delahaye, Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors, Applied Physics A: Materials Science Processing, 82(12), 599(2006) | 5 | HU Fei, ZHAO Chong, WEN Siyi, XIONG Wei, Investigation on the formation of nanoporous layers on TiNb alloys by ultrafast anodization, Journal of Functional Meterials, 8(3), 13(2015) | 5 | (胡飞, 赵翀, 文思逸, 熊伟, 超快阳极氧化TiNb合金制备复合纳米多孔氧化膜的研究, 功能材料, 8(3), 13(2015)) | 6 | P. Poizot, S. Laruelle, S. Grugeon, Nano-sized transitionmetal oxides as negative-electrode materials for lithium-ion batteries, Nature, 407(12), 496(2001) | 7 | K. N. Nam, D. P. Kim, J. Yoo, Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes, Science, 312, 885(2006) | 8 | C. Ban, Z. Wu, D. T. Gillaspie, Nanostructured Fe3O4/SWNT electrode: binder-free and high-rate Li-ion anode, Advanced Materials, 22(5), 145(2010) | 9 | W. F. Wei, X. W. Cui, W. X. Chen, Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chemical Society Reviews, 40, 1697(2010) | 10 | C. C. H, Y. T. Wu, K. H. Chang, Low-temperature hydrothermal ynthesis of Mn3O4 and MnOOH single crystals determinant influence of oxidants, Chemistry of Materials, 20(6), 2890(2008) | 11 | P. Meduri, C. Pendyala, V. Kumar, Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries, Nano Letters, 9(3), 612(2009) | 12 | WANG Lei, ZHANG Zhao, LI Gang, LI Zhongkai, Electrochemical preparation and formation mechanism of nanoporous anodic membrane on Ti6Al4V surface, Journal of Functional Metaials, 6(15), 1053(2009) | 12 | (王磊, 张昭, 李纲, 李仲恺, Ti6Al4V表面纳米多孔氧化膜的电解制备及形成机理研究, 功能材料, 6(15), 1053(2009)) | 13 | X. L. Kong, L. C. L.Huang, C. M. Hsu, High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis, Analytical Chemistry, 77(1), 259(2005) | 14 | F. Adams, V. L. Van, R. Barrett, Advanced analytical techniques: platform for nano materials science, Spectrochimica Acta Part B: Atomic Spectroscopy, 60(18), 13(2005) | 15 | R. Seshadri, F. C. Meldrum, Bioskeletons as templates for ordered macroporous structures, Advanced Materials, 12(10), 1149(2000) | 16 | R. Zeis, T. Lei, K. Sieradzki, Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold, Journal of Catalysis, 253(10), 132(2008) | 17 | X. Lang, A. Hirata, C. Fujita, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nature Nanotechnology, 6(4), 232(2011) | 18 | ZHANG Xuhai, DONG Xiaozhen, YANG Chunlei, ZENG Yuqiao, JIANG Jianqing, Multicomponent nanoporous palladium with enhanced catalytic activity prepared by dealloying metallic glass, Journal of Functional Materials, 24(12), 3634(2013) | 18 | (张旭海, 董小真, 杨春雷, 曾宇乔, 蒋建清, 金属玻璃脱合金制备高催化性能的多元掺杂纳米多孔Pd, 功能材料, 24(12), 3634(2013)) | 19 | L. G. Xue, Z. H. Fu, Y. Yao, T. Huang, A. S. Yu, Three-dimensional porous Sn-Cu alloy anode for lithium-ion batteries, Electrochimica Acta, 55(8), 7310(2010) | 20 | M. Zhang, Z. D. Cui, X. J. Yang, Q. Wei, D. L. Zhu, CdS sensitized nanoporous TiO2/CuO layer prepared by dealloying of Ti-Cu amorphous alloy, Journal of Alloy and Compounds, 80(11), 131(2012) | 21 | H. Zhou, Y. Zhong, Z. S. He, L. Y. Zhang, J. M. Wang, J. Q. Zhang, C. N. Cao, Three-dimensional nanoporous TiO2 network films with excellent electrochemical capacitance performance, Journal of Alloy and Compounds, 59(7), 1(2014) | 22 | J. Y. Brun, S. J.Hamar-Thibault, C. H. Allibert, Cu-Ti and Cu-Ti-Al solid state phase-equilibria in the Cu-rich region, Zeitschrift Fur Metallkunde, 74(8), 525(1983) | 23 | W. A. Soffa, D. E. Laughlin, High-strength age hardening copper-titanium alloys redivivus, Progress in Materials Science, 49, 347(2004) | 24 | WEI Huan, WEI Yinghui, HOU Lifeng, The phase transition and applications of age hardening copper-titanium alloys, Journal of Functional Materials, 10(12), 1001(2015) | 24 | (卫欢, 卫英慧, 侯利锋, 时效硬化铜钛合金的相变应用, 功能材料, 10(12), 1001(2015)) | 25 | H. B. Lu, Y. Li, F. H. Wang, Synthesis of porous copper from nanocrystalline two-phase Cu-Zr film by dealloying, Scripta Materialia, 56, 165(2007) | 26 | H. B. Lu, Y. Li, F. H. Wang, Influence of composition on corrosion behavior of as-cast Cu-Zr alloys in HCl, Electrochimica Acta, 52, 474(2006) | 27 | H. J. Li, W. L. Wang, F. F. Pan, X. D. Xin, Q. Q. Chang, X. M. Liu, Synthesis of single-crystalline α-MnO2 nanotubes and structural characterization by HRTEM, Materials Science and Engineering, 176, 1054(2011) | 28 | B. E. Conway, Transition from “supercapaeitor” to “battery” behavior in electrochemical energy storage, Journal of the Electrochemistry Society, 138(6), 1539(1991) | 29 | FENG Xiaomiao, YAN Zhenzhen, CHEN Ningna, Synthesis of hollow urchin-like MnO2 via a facile hydrothermal method and its application in supercapacitors, Journal of Inorganic Chemistry, 11(5), 2509(2014) | 29 | (冯晓苗, 闫真真, 陈宁娜, 空心海胆状二氧化锰的制备及其在超级电容器中的应用, 无机化学学报, 11(5), 2509(2014)) | 30 | H. Y. Lee, G. B. Goodenough, Supercapacitor behavior with KCl electrolyte, Journal of Solid State Chemistry, 144, 220(1999) | 31 | X. Zhang, X. Z. Sun, H. T. Zhang, D. C. Zhang, Y. W. Ma, Microwave-assisted reflux rapid synthesis of MnO2 nanostructures and their application in supercapacitors, Electrochimica Acta, 87(6), 637(2013) | 32 | J. Wang, D. F. Thomas, A. Chen, Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks, Analytical Chemistry, 80(4), 997(2008) | 33 | S. J. Bao, C. M. Li, H. L. Li, H. T.Luongc John, Morphology and electrochemistry of LiMn2O4 optimized by using different Mn-sources, Journal of Power Sources, 164(5), 885(2007) | 34 | LIU Jiangyun, ZHOU Jun, LIU Li, QIN Chunling, ZHAQ Weimin, Preparation and specific capacitance performance of a new nanoporous copper/manganese dioxide composite electrode material, Journal of Hebei University of Technology, 44(4), 1(2015) | 34 | (刘江云, 周君, 刘丽, 秦春玲, 赵维民, 新型纳米多孔铜/二氧化锰复合电极材料的制备及其比电容特性, 河北工业大学学报, 44(4), 1(2015)) | 35 | H. M. Zhang, D. Guo, J. Zhu, Q. H. Li, L. B. Chen, T. H. Wang, A layer-by-layer deposition strategy of fabricating NiO@rGO composites for advanced electrochemical capacitors, Electrochimica Acta, 152(12), 378(2015) | 36 | H. J. Qiu, L. Peng, X. Li, Y. Wang, Enhanced supercapacitor performance by fabricating hierarchical nanoporous nickel/nickel hydroxide structure, Materials Letters, 158(6), 366(2015) | 37 | L. L. Zhang, R. Zhou, X. S. Zhao, Graphene-based materials as supercapacitors electrodes, Journal of Materials Chemistry, 20(12), 83(2010) |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|