Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (1): 53-58    DOI: 10.11901/1005.3093.2020.036
ARTICLES Current Issue | Archive | Adv Search |
Feasibility of Electrospun 2-Dimensional CdO Nanorods for Application in Glucose Sensors
WANG Yongpeng, JIA Zhihao, LIU Mengzhu()
Jilin Institute of Chemical Technology, Jilin 132022, China
Cite this article: 

WANG Yongpeng, JIA Zhihao, LIU Mengzhu. Feasibility of Electrospun 2-Dimensional CdO Nanorods for Application in Glucose Sensors. Chinese Journal of Materials Research, 2021, 35(1): 53-58.

Download:  HTML  PDF(3514KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

2-dimensional CdO nanorods were fabricated by electrospinning technique with poly(vinyl pyrrolidone) (PVP) as template and subsequently calcinated. SEM, TGA, DSC, FT-IR and XRD were used to characterize the morphology and structure of the as-prepared nanorods. The results show that the CdO nanorods is highly purified with a special morphology, namely, the nanorods stick together to form a porous film. The special morphology is related to the melting of PVP polymer during calcination. The prepared CdO nanorods were subsequently used to modify a glassy carbon electrode and then, with which the direct electrocatalytic oxidation of glucose was investigated. Results show that the CdO nanorods modified electrode has a better response to glucose and stronger resistance to the interference from AA, UA and ethanol rather than the electrode modified with CdO powder. The improved performance can be ascribed to the 2-dimensional CdO nanorods morphology, which enhanced the specific surface area, thereby enhancing the activity of electrode, facilitating the oxidation of glucose. So that, the fabricated CdO nanorods have the possibility of application as glucose sensor.

Key words:  synthesizing and processing technics for materials      cadmium oxide nanorods      electrospinning      glucose sensor      two-dimensional nano structure     
Received:  06 February 2020     
ZTFLH:  O69  
Fund: Education Department of Jilin Province (Nos. JJKH20190831KJ & JJKH20200249KJ), Science and Technology Innovation Development Program of Jilin City (Nos. 201831765 & 20190104129)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.036     OR     https://www.cjmr.org/EN/Y2021/V35/I1/53

Fig.1  SEM images of before calcination (a), after calcination at 600℃ for 4 h (b) of PVP/Cd(CH3COO)2 composite nanofibers and pure CdO powder (c)
Fig.2  Formation mechanism of the nanorods
Fig.3  TGA curves (A) and DSC curves (B) of PVP nano-fibers (a) and PVP/Cd(CH3COO)2 composite na-nofibers (b)
Fig.4  FI-IR spectra of (a) PVP/Cd(CH3COO)2 composite nanofibers; (b) is (a) after calcination at 600℃ for 4 h
Fig.5  XRD spectra of pure CdO powder (a) and PVP/Cd-(CH3COO)2 composite nanofibers (b) after calcination at 600℃ for 4 h
Fig.6  CV curves of different samples in 0.1 mol/L NaOH of CdO-powder-GCE (a) and CdO-NRs-GCE (b) (volatage range is 0.2~0.7 V and the scan rate is 50 mV/s)
Fig.7  CV curves of CdO-NRs-GCE at 50 mV/s. (a) 0.1 mol/L NaOH; (b) 0.1 mol/L NaOH+0.4 mmol/L glucose; (c) 0.1 mol/L NaOH+0.8 mmol/L glucose
Fig.8  Amperometric responses of CdO-powder-GCE(a) and CdO-NRs-GCE (b) with successive additions of 3 mmol/L glucose, 0.1 mmol/L AA, 0.1 mmol/L UA, 10 mmol/L ethanol to 0.1 mol/L NaOH at 0.40 V
1 Crespilho F N, Esteves M C, Sumodjo P T A, et al. Development of highly selective enzymatic devices based on deposition of permselective membranes on aligned nanowires [J]. J. Phys. Chem., 2009, 113C: 6037
2 Okahata Y, Tsuruta T, Ijiro K, et al. Langmuir-Blodgett films of an enzyme-lipid complex for sensor membranes [J]. Langmuir, 1988, 4: 1373
3 Bai Y, Sun Y Y, Sun C Q. Pt-Pb nanowire array electrode for enzyme-free glucose detection [J]. Biosen. Bioelectron., 2008, 24: 579
4 Wang J P, Thomas D F, Chen A C. Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks [J]. Anal. Chem., 2008, 80: 997
5 Li Y, Song Y Y, Yang C, et al. Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose [J]. Electrochem. Commun., 2007, 9: 981
6 Park S, Chung T D, Kim H C. Nonenzymatic glucose detection using mesoporous platinum [J]. Anal. Chem., 2003, 75: 3046
7 Liu Y X, Ding Y, Zhang Y C, et al. Pt-Au nanocorals, Pt nanofibers and Au microparticles prepared by electrospinning and calcination for nonenzymatic glucose sensing in neutral and alkaline environment [J]. Sens. Actuators, 2012, 171-172B: 954
8 Subramanyam K T, Rao G M, Uthanna S. Process parameter dependent property studies on CdO films prepared by DC reactive magnetron sputtering [J]. Mater. Chem. Phys., 2001, 69: 133
9 Champness C H, Ghoneim K, Chen J K. An improved conventional Se-CdO photovoltaic cell [J]. Can. J. Phys., 1985, 63: 767
10 Su L M, Grote N, Schmitt F. Diffused planar InP bipolar transistor with a cadmium oxide film emitter [J]. Electron. Lett., 1984, 20: 716
11 Guo Z, Li M Q, Liu J H. Highly porous CdO nanowires: preparation based on hydroxy- and carbonate-containing cadmium compound precursor nanowires, gas sensing and optical properties [J]. Nanotechnology, 2008, 19: 245611
12 Zhao Z Y, Morel D L, Ferekides C S. Electrical and optical properties of tin-doped CdO films deposited by atmospheric metalorganic chemical vapor deposition [J]. Thin Solid Films, 2002, 413: 203
13 Zhang Y, Kolmakov A, Chretien S, et al. Control of catalytic reactions at the surface of a metal oxide nanowire by manipulating electron density inside it [J]. Nano Lett., 2004, 4: 403
14 Sahay R, Kumar P S, Aravindan V, et al. High aspect ratio electrospun CuO nanofibers as anode material for lithium-ion batteries with superior cycleability [J]. J. Phys. Chem., 2012, 116C: 18087
15 Varghese N, Panchakarla L S, Hanapi M, et al. Solvothermal synthesis of nanorods of ZnO, N-doped ZnO and CdO [J]. Mater. Res. Bull., 2007, 42: 2117
16 Zhang F, Be F L, Cao J M, et al. The preparation of CdO nanowires from solid-state transformation of a layered metal-organic framework [J]. J. Solid State Chem., 2008, 181: 143
17 Kuo T J, Huang M H. Gold-catalyzed low-temperature growth of cadmium oxide nanowires by vapor transport [J]. J. Phys. Chem., 2006, 110B: 13717
18 Wang Y W, Liang C H, Wang G Z, et al. Preparation and characterization of ordered semiconductor CdO nanowire arrays [J]. J. Mater. Sci. Lett., 2001, 20: 1687
19 Singh P, Pandey S K, Singh J, et al. Biomedical perspective of electrochemical nanobiosensor [J]. Nano-Micro Lett., 2016, 8: 193
20 Zhang L, Ye C, Li X, et al. A CuNi/C nanosheet array based on a metal-organic framework derivate as a supersensitive non-enzymatic glucose sensor [J]. Nano-Micro Lett., 2018, 10: 28
21 Wang Y P, Xu Z B, Liu M Z, et al. Non-enzymatic glucose sensor based on the electrospun porous foamy copper oxides micro-nanofibers [J]. Chem. J. Chin. Univ., 2019, 40: 1310
王永鹏, 徐子勃, 刘梦竹等. 多孔泡沫状CuO微纳米纤维的制备及用于无酶葡萄糖传感器 [J]. 高等学校化学学报, 2019, 40: 1310
22 Ding Y, Wang Y, Zhang L C, et al. Preparation, characterization and application of novel conductive NiO-CdO nanofibers with dislocation feature [J]. J. Mater. Chem., 2012, 22: 980
[1] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[2] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[3] YAN Fuzhao, LI Jing, XIONG Liangyin, LIU Shi. Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging[J]. 材料研究学报, 2022, 36(6): 461-470.
[4] XU Wencui, LIN Yingzheng, SHAO Zaidong, ZHENG Yuming, CHENG Xuan, ZHONG Lubin. Facile Preparation of Electrospun Carbon Nanofiber Aerogels for Oils Absorption[J]. 材料研究学报, 2021, 35(11): 820-826.
[5] XIA Ao, ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang. Preparation and Electrochemical Properties of B-doped MnO2[J]. 材料研究学报, 2021, 35(1): 36-44.
[6] ZHENG Xie, ZHA Liusheng. Preparation of Ultra-fast Temperature Responsive Nanofibrous Hydrogel and Application in Controllable Drug Release[J]. 材料研究学报, 2020, 34(6): 452-458.
[7] XIE Lilan, YANG Dongsheng, LING Jing. Synthesis and Formation Mechanism of Lithium Battery High-Capacity Anode Material TiNb2O7[J]. 材料研究学报, 2020, 34(5): 385-391.
[8] MA Weijie,YANG Xirong,LUO Lei,LIU Xiaoyan,HAO Fengfeng. Dynamic Recrystallization Model of Ultrafine Grain Pure Titanium Prepared by Combined Deformation Process[J]. 材料研究学报, 2020, 34(3): 217-224.
[9] JIANG Jufu, WANG Ying, XIAO Guanfei, DENG Teng, LIU Yingze, ZHANG Ying. Influence of Modification, Refinement and Heat Treatment on Mechanical Properties of A356 Al-alloy Components Prepared by Squeeze Casting[J]. 材料研究学报, 2020, 34(12): 881-891.
[10] YANG Zhanxin, WU Qiong, REN Yiqiao, QU Kaikai, ZHANG Zhehao, ZHONG Weili, FAN Guangning, QI Guochao. Massive Preparation and Supercapacitor Performance of Layered Ti3C2[J]. 材料研究学报, 2020, 34(11): 861-867.
[11] Xiuli HU,Xiaxi YAO,Wenjun ZHANG,Wangjin JI,Jiacheng MU,Yuwen YONG,Xuhong WANG. Preparation of Porous Carbon Fibers with Different Carbon Sources and Their Adsorption Properties[J]. 材料研究学报, 2019, 33(5): 379-386.
[12] Qiang WANG, Ruiting HAO, Qichen ZHAO, Sijia LIU. Preparation of Cu2ZnSnS4 Thin Film Solar Cells by Cyclically and Sequentially Sputtering Three Sulfide-targets[J]. 材料研究学报, 2018, 32(6): 409-414.
[13] Yifan ZHOU, Xie ZHENG, Jianfeng ZHOU, Liusheng ZHA. Preparation and Characterization of Temperature-responsive Hollow Nanofibrous Membrane[J]. 材料研究学报, 2018, 32(5): 327-332.
[14] Zhenghua LIU, Jing WANG, Haiying DU, Huisheng WANG, Xiaogan LI, Xiaofeng WANG. Joint Simulation of Electrospinning Trajectory[J]. 材料研究学报, 2018, 32(2): 127-135.
[15] Kansong CHEN,Yang LI,Han TIAN,Haoshuang GU. Synthesis and Photocatalytic Performance of Heterostructured Nano-Composite Bi4Ti3O12/TiO2[J]. 材料研究学报, 2014, 28(7): 503-508.
No Suggested Reading articles found!