Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (9): 674-682    DOI: 10.11901/1005.3093.2020.017
ARTICLES Current Issue | Archive | Adv Search |
Ionic Liquid-assisted Synthesis of Nanocellulose Adsorbent and Its Adsorption Properties
HUANG Jian1(), LIN Chunxiang1, CHEN Ruiying2, XIONG Wanyong1, WEN Xiaole1, LUO Xin1
1. College of Environment & Resources, Fuzhou University, Fuzhou 350108, China
2. College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350116, China
Cite this article: 

HUANG Jian, LIN Chunxiang, CHEN Ruiying, XIONG Wanyong, WEN Xiaole, LUO Xin. Ionic Liquid-assisted Synthesis of Nanocellulose Adsorbent and Its Adsorption Properties. Chinese Journal of Materials Research, 2020, 34(9): 674-682.

Download:  HTML  PDF(3150KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nanocellulose adsorbent (AA/AM-g-NC) from cotton linter was successfully prepared by high pressure homogenization with the assistance of an ionic liquid. The cotton linter was first swelled, hydrolyzed and grafted with acrylic acid and acrylamide in an ionic liquid (1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim]HSO4)), and then further treated by high pressure homogenization and finally AA/AM-g-NC was obtained. The AA/AM-g-NC adsorbent was characterized and used as adsorbent to adsorb methylene blue. The results show that after the treatment of high pressure homogenization assisted with hydrolysis and graft in ionic liquid AA/AM-g-NC illustrated as crosslinked net with fibril. The crystalline of AA/AM-g-NC remained as cellulose Ⅰ type, with a little increase in the crystallinity. The appearance of functional group from acrylic acid and acrylamide on the AA/AM-g-NC surface was proved. The sorption process towards methylene blue was pH value dependent, spontaneous, exothermic and followed the Langmuir adsorption isotherm. And the adsorption kinetic is closer to the quasi-second order kinetic equation and controlled by both intraparticle diffusion and surface diffusion.

Key words:  organic polymer materials      nanocellulose      graft copolymerization      adsorbent      ionic liquid      methylene blue     
Received:  13 January 2020     
ZTFLH:  TQ352  
Fund: National Natural Science Foundation of China(21577018);Fujian Provincial Department of Education Project(JAT160059)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.017     OR     https://www.cjmr.org/EN/Y2020/V34/I9/674

Fig.1  SEM images of NC (a) and AA/AM-g-NC (b)
Fig.2  TEM images of NC (a) and AA/AM-g-NC (b)
Fig.3  FTIR of Ce, NC and AA/AM-g-NC
Fig.4  XRD patterns of NC and AA/AM-g-NC
Fig.5  XPS survey spectra of NC (a) and AA/AM-g-NC (b) and XPS survey scan of N1s core level (b inserted)
Fig.6  XPS survey of C1s, N1s and O1s of NC and AA/AM-g-NC
SampleO/%C/%H/%N/%
NC51.2442.656.020.37
AA/AM-g-NC46.2144.076.093.13
Table 1  Element content of NC and AA/AM-g-NC
SampleParameters of pore structure
Surface area/m2·g-1

Pore volume

/cm3·g-1

Average pore size

/nm

Ce3.3900.00366.047
NC13.040.0134.010
AA/AM-g-NC12.950.0195.834
Table 2  Adsorption parameters of Ce, NC and AA/AM-g-NC
Fig.7  Comparison of remove rate and adsorption capacity of methylene blue on Ce, NC, AA/AM-g-Ce and AA/AM-g-NC. Adsorption conditions: pH,10; MB initial concentration, 20 mg/L; adsorption time, 2 h; adsorption temperature, room temperature
AdsorbentSoluteC0/mg·L-1qe(exp)/mg·L-1Ref.
NCC(T=35℃)4.802.9[16]
9.604.9
14.396.6
NCC(T=45℃)MB4.802.9
9.605.4
14.396.9
NCC(T=55℃)4.802.9
9.605.4
14.396.7
10010.41[17]
20017.24
NCC alginate hydrogel beadsMB40035.28
60050.29
80072.84
Cellulose nanowhiskers-based polyurethane foamMB5043.5[18]
Table 3  Comparison of adsorption performance towards methyl blue between AA/AM-g-NC and other nanocellulse adsorbent reported
Fig.8  Effect of pH on the adsorption properties of AA/AM-g-NC. Adsorption conditions: MB initial con-centration, 20 mg/L; adsorption time, 2 h; adsorption temperature, room temperature
Fig.9  Langumuir (a) and Freundlich (b) equation fitting
Temperature/KLangmuir parametersFreundlich parameters
Q0/mg·g-1b/L·mg-1R2K1/nR2
30335.840.9820.99616.870.3110.981
31334.360.9150.99516.150.2960.990
32332.570.8290.98815.250.2840.981
Table 4  Calculated parameters for the Langmuir and Freundlich model
Temperature/K△G/kJ·mol-1△S/J·(mol·K)-1△H/kJ·mol-1
303-0.0459-0.0225-6.876
313-0.232-0.0212
323-0.505-0.0197
Table 5  Thermodynamic parameters
Fig.10  Fitting curves of Pseudo-first-order (a) and Pseudo-second-order (b)
Fig.11  Intraparticle diffusion equation curve
Pseudo-first-order kinetic modelPseudo-second-order kinetic model
k1qeR2k2qeR2
0.03056.020.9350.001248.920.999
Table 6  Kinetic parameters of adsorption process
[1] O'Connell D W, Birkinshaw C, O'Dwyer T F. Heavy metal adsorbents prepared from the modification of cellulose: A review [J]. Bioresour. Technol., 2008, 99: 6709
doi: 10.1016/j.biortech.2008.01.036 pmid: 18334292
[2] O'Connell D W, Birkinshaw C, O'Dwyer T F. A modified cellulose adsorbent for the removal of nickel(II) from aqueous solutions [J]. J. Chem. Technol. Biotechnol., 2006, 81: 1820
[3] Alila S, Boufi S. Removal of organic pollutants from water by modified cellulose fibres [J]. Ind. Crops Prod., 2009, 30: 93
[4] Paquet O, Krouit M, Bras J, et al. Surface modification of cellulose by PCL grafts [J]. Acta. Mater., 2010, 58: 792
[5] Gardner D J, Oporto G S, Mills R, et al. Adhesion and surface issues in cellulose and nanocellulose [J]. J. Adhes. Sci. Technol., 2008, 22: 545
[6] Mariano M, El Kissi N, Dufresne A. Cellulose nanocrystals and related Nanocomposites: Review of some properties and challenges [J]. J. Polym. Sci., 2014, 52B: 791
[7] Ding C X, Pan M Z. Research progress in stimuli-responsive functional materials based on cellulose nanocrystals [J]. J. Mater. Eng., 2019, 47(1): 32
(丁春香, 潘明珠. 基于纤维素纳米晶体的刺激响应功能材料的研究进展 [J]. 材料工程, 2019, 47(1): 32)
[8] Islam M T, Alam M M, Patrucco A, et al. Preparation of nanocellulose: a review [J]. Aatcc. J. Res., 2014, 1: 17
[9] Singh K, Arora J K, Sinha T J M, et al. Functionalization of nanocrystalline cellulose for decontamination of Cr(III) and Cr(VI) from aqueous system: computational modeling approach [J]. Clean Tech. Environ. Policy, 2014, 16: 1179
[10] Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellose with ionic liquids [J]. J. Am. Chem. Soc., 2002, 124: 4974
doi: 10.1021/ja025790m pmid: 11982358
[11] Lu Y, Sun Q F, Yu H P, et al. Dissolution and regeneration of cellulose and development in processing cellulose-based materials with ionic liquids [J]. Chin. J. Org. Chem., 2010, 30: 1593
(卢芸, 孙庆丰, 于海鹏等. 离子液体中的纤维素溶解、再生及材料制备研究进展 [J]. 有机化学, 2010, 30: 1593)
[12] Qiu J, Wang Z Y, Sun Q, et al. Effect of surface modification and hybridization of uhmwpe fibers on performance of their composites with epoxy resin [J]. Chin. J. Mater. Res., 2015, 29: 807
(邱军, 王增义, 孙茜等. 表面改性和混杂对超高分子量聚乙烯纤维/环氧树脂复合材料性能的影响 [J]. 材料研究学报, 2015, 29: 807)
[13] Su X Y, Bai B, Ding C X, et al. Preparation and water absorption/retention properties of coconut husk powders/ poly (acrylic acid-co-acryl amide) hybrid superabsorbent [J]. Mater. Rev., 2015, 29(6): 54
(苏小育, 白波, 丁晨旭等. 椰糠粉/聚丙烯酸-丙烯酰胺复合吸水材料的制备及其吸保水性能 [J]. 材料导报, 2015, 29(6): 54)
[14] Wang Y H, Wei X Y, Li J H, et al. Homogeneous isolation of nanocellulose from cotton cellulose by high pressure homogenization [J]. J. Mater. Sci. Chem. Eng., 2016, 1: 49
[15] Zafeiropoulos N E, Vickers P E, Baillie C A, et al. An experimental investigation of modified and unmodified flax fibres with XPS, ToF-SIMS and ATR-FTIR [J]. J. Mater. Sci., 2003, 38: 3903
[16] Samiey B, Tehrani A D. Study of adsorption of Janus Green B and methylene blue on nanocrystalline cellulose [J]. J. Chin. Chem. Soc., 2015, 62: 149
[17] Mohammed N, Grishkewich N, Berry R M, et al. Cellulose nanocrystal-alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions [J]. Cellulose, 2015, 22: 3725
[18] Kumari S, Chauhan G S, Ahn J H. Novel cellulose nanowhiskers-based polyurethane foam for rapid and persistent removal of methylene blue from its aqueous solutions [J]. Chem. Eng. J., 2016, 304: 728
[19] Saucedo I, Guibal E, Roussy J, et al. Uranium sorption by glutamate glucall: A modified chitosan part I: Equilibrium studies [J]. Water SA, 1993, 19: 113
[20] Leyva-Ramos R, Fuentes-Rubio L, Guerrero-Coronado R M, et al. Adsorption of trivalent chromium from aqueous solutions onto activated carbon [J]. J. Chem. Technol. Biotechnol., 1995, 62: 64
[21] Haribabu E, Upadhya Y D, Upadhyay S N. Removal of phenols from effluents by fly ash [J]. Int. J. Environ. Stu., 1993, 43: 169
[22] Han R P, Zhang J H, Zou W H, et al. Biosorption of copper(II) and lead(II) from aqueous solution by chaff in a fixed-bed column [J]. J. Hazard. Mater., 2006, 133: 262
doi: 10.1016/j.jhazmat.2005.10.019 pmid: 16298055
[23] Acemioğlu B. Removal of Fe(II) ions from aqueous solution by Calabrian pine bark wastes [J]. Bioresour. Technol., 2004, 93: 99
doi: 10.1016/j.biortech.2003.10.010 pmid: 14987727
[24] Rengaraj S, Kim Y, Joo C K, et al. Removal of copper from aqueous solution by aminated and protonated mesoporous aluminas: kinetics and equilibrium [J]. J. Colloid Interface Sci., 2004, 273: 14
doi: 10.1016/j.jcis.2004.01.007 pmid: 15051430
[25] Chiron N, Guilet R, Deydier E. Adsorption of Cu(II) and Pb(II) onto a grafted silica: isotherms and kinetic model [J]. Water Res., 2003, 37: 3079
pmid: 14509694
[26] Hua K, Rocha I, Zhang P, et al. Transition from bioinert to bioactive material by tailoring the biological cell response to carboxylated nanocellulose [J]. Biomacromolecules, 2015, 17: 1224
pmid: 26886265
[27] Vadivelan V, Kumar K V. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk [J]. J. ColloidInterface Sci., 2005, 286: 90
[1] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[5] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[6] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[7] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[8] QUE Aizhen, ZHU Taoyu, ZHENG Yuying. Preparation of Hollow Magnetic Graphene Oxide and Its Adsorption Performance for Methylene Blue[J]. 材料研究学报, 2021, 35(7): 517-525.
[9] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] MU Zhaoyu, CAI Wenjie, CHEN Yue, PAN Jie, CHEN Yang. Preparation and Photocatalytic Activity of Meso-silica/ceria Binary Composites with a Core/shell Structure[J]. 材料研究学报, 2021, 35(5): 364-370.
[12] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[13] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[14] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
[15] WAN Liying, XIAO Yang, ZHANG Lunliang. Preparation and Properties of PU-DA System Based on Thermoreversible Diels-Alder Dynamic Covalent Bond[J]. 材料研究学报, 2021, 35(10): 752-760.
No Suggested Reading articles found!