Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (9): 665-673    DOI: 10.11901/1005.3093.2020.103
ARTICLES Current Issue | Archive | Adv Search |
Hot Deformation Behavior of TC4 Ti-Alloy Prepared by Electron Beam Cold Hearth Melting
WANG Wei1,2(), GONG Penghui1, ZHANG Haoze2,3, SHI Yaming2, WANG Meng1, ZHANG Xiaofeng2, WANG Kuaishe1
1. School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2. Yunnan Titanium Industry Co., Ltd, Chuxiong 651209, China
3. School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Cite this article: 

WANG Wei, GONG Penghui, ZHANG Haoze, SHI Yaming, WANG Meng, ZHANG Xiaofeng, WANG Kuaishe. Hot Deformation Behavior of TC4 Ti-Alloy Prepared by Electron Beam Cold Hearth Melting. Chinese Journal of Materials Research, 2020, 34(9): 665-673.

Download:  HTML  PDF(12667KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The hot deformation behavior of electron beam cold hearth melting TC4 Ti-alloy at 850~1100℃, by strain rate 0.01~10 s-1 were investigated through a series of thermal simulation compression experiments via Gleeble-3800 thermal simulator. According to the true stress-true strain curve, the influence of deformation parameters on rheological stress was analyzed, and the Arrhenius constitutive model and DMM processing maps was established. The results show that the flow stress decreases with the increase of deformation temperature, and the flow stress decreases with the increase of strain rate. The hot deformation activation energy was Q=746.334 kJ/mol and Q=177.841 kJ/mol for the TC4 Ti-alloys composed of (α+β) two-phase and β phase respectively. The error analysis of the model was carried out by correlation coefficient method and relative average error. The correlation coefficient R2=0.995 and the relative average error AARE=5.04%, which indicates that the established model is accurate and can accurately predict the thermal deformation flow stress. The best processing area of the alloy is within the temperature range of 1000~1100℃ and strain rate range of 0.01~0.1 s-1.

Key words:  metallic materials      Electron Beam Cold Hearth Melting      TC4      hot deformation      constitutive model      processing maps     
Received:  07 April 2020     
ZTFLH:  TG146.2  
Fund: China Postdoctoral Science Foundation(2019M653571)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.103     OR     https://www.cjmr.org/EN/Y2020/V34/I9/665

Fig.1  Macroscopic structure (a) and original structure (b) of TC4钛合金
Fig.2  True stress and true strain curves (a) 850℃, (b) 900℃, (c) 950℃, (d) 1000℃, (e) 1050℃, (f) 1100℃
Fig.3  Dependence of peak stress on temperature and strain rate (a) T-σ, (b) lnε˙-σ
Fig.4  Relationship between (a) lnσ-lnε˙, (b) σ-lnε˙
Fig.5  Relationship between ln[sinh(ασ)] and lnε˙
Fig.6  Relationship between hot compression deformation peak stress and deformation temperature
Fig.7  Relationship between ln[sinh(ασ)] and lnZ
Fig.8  Correlation between the experimental and predicted flow stress data by the constitutive equation
Fig.9  Processing maps for primary rolling of TC4 titanium alloy by EBCHM
Fig.10  Microstructures of TC4 titanium alloy under different deformation (a) 850℃, 0.1 s-1; (b) 850℃, 1.0 s-1; (c) 950℃, 1.0 s-1 (d) 1100℃, 0.01 s-1
Fig.11  Macro photos and microstructures of the specimens under 950℃、10 s-1
Q/kJ·mol-1
α+ββ
EB(This paper)746.334177.841
VAR [21]564.05300.2
VAR[22]330.86267.77
VAR4[6]677.37267.36
Table 1  Activation energy of TC4 titanium alloy by EBCHM and VAR
[1] Kotkunde N, Deole A D, Gupta A K, et al. Failure and formability studies in warm deep drawing of Ti-6Al-4V alloy [J]. Materials & Design, 2014, 60: 540
[2] Li X M, Liu L, Dong J, et al. Discussion on economic analysis and decreasing cost process of titanium and titanium alloys [J].Materials China, 2015, 34(05): 401
(李献民, 刘立, 董洁等. 钛及钛合金材料经济性及低成本方法论述 [J].中国材料进展, 2015, 34(05): 401)
[3] Bolzoni L, Ruiz-Navas E M, Gordo E. Understanding the properties of low-cost iron-containing powder metallurgy titanium alloys [J]. Materials & Design, 2016, 110: 317
[4] Huang Z H, Qu H L, Deng C, et al. Development and application of aerial titanium and its alloys [J]. Materials Review, 2011, 25(1): 102
(黄张洪, 曲恒磊, 邓超等.航空用钛及钛合金的发展及应用 [J]. 材料导报, 2011, 25(1): 102)
[5] Feng Q Y, Tong X W, Wang J, et al. Status quo and development tendency on the research of low cost titanium alloy [J]. Materials Review, 2017, 31(09): 128
(冯秋元, 佟学文, 王俭等. 低成本钛合金研究现状与发展趋势 [J]. 材料导报, 2017, 31(09): 128)
[6] Luo J, Li M Q, Li H, et al. High temperature deformation behavior of TC4 titanium alloy and its flows stress model [J]. The Chinese Journal of Nonferrous Metals, 2008(08): 1395
(罗皎, 李淼泉, 李宏等. TC4钛合金高温变形行为及其流动应力模型 [J]. 中国有色金属学报, 2008(08): 31)
[7] Yang B W, Xue Y, Zhang Z M, et al. Study on high temperature deformation behavior of HIP TC4 titanium alloy [J]. Hot Working Technology, 2018, 47(23): 38
(杨博文, 薛勇, 张治民等. 热等静压态TC4钛合金高温变形行为研究 [J]. 热加工工艺, 2018, 47(23): 38)
[8] Seshacharyulu T, Medeiros S C, Frazier W G, et al. Hot working of commercial Ti-6Al-4V with an equiaxed α-β microstructure: Materials modeling considerations [J]. Materials Science & Engineering A, 2000, 284(1-2): 184
[9] Pan Y Q, Yang Z S. Hot compressive deformation behavior of TC4 titanium alloy [J]. Rare Metal Materials and Engineering, 1993, 22(05): 45
(潘雅琴, 杨昭苏. TC4钛合金热压变形行为的研究 [J]. 稀有金属材料与工程, 1993, 22(05): 45)
[10] Bai J J, Li W, Liang Y L, et al. High temperature compressive deformation behavior of TC4 titanium alloy [J]. Heat Treatment of Metals, 2017, 42(05): 121
(白娇娇, 李伟, 梁益龙等. TC4钛合金的高温压缩变形行为 [J]. 金属热处理, 2017, 42(05): 121)
[11] Xu Y. Hot deformation behavior and low temperature superplasticity of rolled TC4 titanium alloy in the α+β phase field [D]. Nanchang: Nanchang University, 2018
(徐勇. 轧制态TC4钛合金α+β两相区热变形行为及其低温超塑性研究 [D]. 南昌: 南昌大学, 2018)
[12] Xiaona Peng, Hongzhen Guo, Zhifeng Shi, et al. Study on the hot deformation behavior of TC4-DT alloy with equiaxed α+β starting structure based on processing map [J]. Materials Science & Engineering A, 2014: 605
[13] Liu J X, Wu X D, Wan M, et al. Study on hot deformation behavior of titanium alloy by modified Arrhennius equation [J]. Materials Science and Technology, 2015, 23(03): 7
(刘俊雄, 吴向东, 万敏等. 基于修正的Arrhennius方程钛合金高温本构方程研究 [J]. 材料科学与工艺, 2015, 23(03): 7)
[14] Hu M, Dong L, Zhang Z, et al. A novel computational method of processing map for Ti-6Al-4V alloy and corresponding microstructure study [J]. Materials, 2018, 11(9): 1599
doi: 10.3390/ma11091599
[15] Cai J, Li F, Liu T, et al. Constitutive equations for elevated temperature flow stress of Ti-6Al-4V alloy considering the effect of strain [J]. Materials & Design, 2011, 32(3): 1144
[16] Xu Y, Yang X J, He Y, et al. Microstructure and mechanical properties of TC4 titanium alloy subjected to multi-pass warm rolled [J]. Rare Metal Materials and Engineering, 2017, 46(05): 1321
(徐勇, 杨湘杰, 何毅等. 稀有金属材料与工程, 2017, 46(05): 1321)
[17] Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel [J]. Journal of applied physics, 1944, 15(1): 22
doi: 10.1063/1.1707363
[18] Jia W J, Suo J G, Hou H M, et al. Hot deformation behavior of TC4 titanium alloy with high-oxygen in β phase region [J]. Titanium Industry Progress, 2018, 35(05): 8
(贾蔚菊, 索军刚, 侯红苗等. 高氧TC4钛合金β相区变形行为研究 [J]. 钛工业进展, 2018, 35(05): 13)
[19] Sun Z Y, Liu J R, Li R, et al. Predicted constitutive modeling of hot deformation for AZ31 magnesium alloy [J]. Acta Metallurgica Sinica, 2011, 47(02): 191
(孙朝阳, 刘金榕, 李瑞等. Incoloy 800H高温变形流动应力预测模型 [J]. 金属学报, 2011, 47(2): 853)
[20] Xu M, Jia W J, Zhang Z H, et al. Hot compression deformation behavior and processing map of TA15 alloy [J]. Rare Metal Materials and Engineering, 2017, 46(09): 2708
(徐猛, 贾蔚菊, 张志豪等. TA15钛合金高温热压缩变形行为及热加工图 [J]. 稀有金属材料与工程, 2017, 46(09): 2708)
[21] Quan G, Wen H, Zou Z. Construction of processing maps based on expanded data by BP-ANN and identification of optimal deforming parameters for Ti-6Al-4V alloy [J]. International Journal of Precision Engineering and Manufacturing, 2016, 17(2): 171
doi: 10.1007/s12541-016-0022-z
[22] Liu L J. The study on the application of the improved constituive equation for titanium alloy in high speed milling [D]. Taiyuan: Taiyuan University of Technology, 2013
(刘丽娟. 钛合金Ti-6A1-4V修正本构模型在高速铣削中的应用研究 [D]. 太原: 太原理工大学, 2013)
[23] Fang G, Zou J R, Lu Y F, et al. Processing map of titanium alloy TC4 and its application for plate rolling analyses [J]. J. Tsinghua Univ (Sci & Tech), 2012, 52(07): 929
(方刚, 邹建荣, 卢亚锋等. TC4钛合金加工图及其在板材轧制工艺分析中的应用 [J]. 清华大学学报(自然科学版), 2012, 52(07): 929)
[24] Yue Y W, Wen T, Liu L T, et al. Predicted processing map of TC4 titanium alloy based on BP neural network [J]. Chinese Journal of Rare Metals, 2014, 38(04): 567
(岳远旺, 温彤, 刘澜涛等. 基于BP神经网络预测的TC4热加工图 [J]. 稀有金属, 2014, 38(04): 567)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] LIU Tianfu, ZHANG Bin, ZHANG Junfeng, XU Qiang, SONG Zhuman, ZHANG Guangping. Effect of Notch Stress Concentration Factors on Low-cycle Fatigue Performance of TC4 ELI Alloy[J]. 材料研究学报, 2023, 37(7): 511-522.
No Suggested Reading articles found!