Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (5): 364-370    DOI: 10.11901/1005.3093.2020.326
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Photocatalytic Activity of Meso-silica/ceria Binary Composites with a Core/shell Structure
MU Zhaoyu, CAI Wenjie, CHEN Yue, PAN Jie, CHEN Yang()
School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
Cite this article: 

MU Zhaoyu, CAI Wenjie, CHEN Yue, PAN Jie, CHEN Yang. Preparation and Photocatalytic Activity of Meso-silica/ceria Binary Composites with a Core/shell Structure. Chinese Journal of Materials Research, 2021, 35(5): 364-370.

Download:  HTML  PDF(9687KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to improve the photocatalytic activity and efficiency of ceria materials, the binary composite photocatalyst with a core/shell structure was fabricated by grafting CeO2 nanoparticles on the surfaces of worm-like mesoporous silica supports. The prepared composite was characterized by means ofXRD, SEM, TEM, STEM-EDX mapping, UV-Vis, Raman, PL, N2 adsorption-desorption measurements. The photodegradation towards methylene blue catalyzed by composite particles was tracked under UV irradiation. The results show that the particle size of mesoporous silica with a specific area up to 1627 m2/g is in the range of 180~200 nm, which was covered with an uniform layer of ca. 20 nm in thickness composed of a large number of nanometer ceria particles. The mesoporous cores exhibited a strong adsorption capacity for MB and therefore enriched MB around CeO2 active nanoparticles, resulting in enhanced photodegradation activity for MB. Furthermore, it is worth noting that CeO2 nanoparticles in the shell were doped with Er3+ and then calcinated in nitrogen atmosphere, can further enhance the photodegradation reaction activity of the binary composite photocatalyst.

Key words:  composite      ceria      mesoporous silica      core/shell structure      photocatalysis      methylene blue     
Received:  05 August 2020     
ZTFLH:  TB332  
Fund: National Natural Science Foundation of China(51575058)
About author:  CHEN Yang, Tel: (0519)86330066, E-mail: cy.jpu@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.326     OR     https://www.cjmr.org/EN/Y2021/V35/I5/364

Fig.1  SEM (a) and TEM (b) images of W-mSiO2 samples
Fig.2  N2 adsorption/desorption isotherms (a) XRD patterns (b) of W-mSiO2
Fig.3  XRD patterns (a), Raman spectra (b) and (c) N2 adsorption/desorption isotherms of composite particles
Fig.4  SEM and TEM images of composite particles (a) S1, (b) S2
Fig.5  EDX elemental mapping of individual particle S2 (a) Si, (b) Ce, (c) Er (d) Si-Ce-Er
Fig.6  UV-vis absorption spectra and corresponding Kubelka-Munk plots (a) and potoluminescence spectra (b)
Fig.7  Degradation rate for MB and mechanism for photocatalytic activity
1 Chen Y, Zuo C Z, Li Z F, et al. Design of ceria grafted mesoporous silica composite particles for high-efficiency and damage-free oxide chemical mechanical polishing [J]. J. Alloys Compd., 2018, 736: 276
2 Ideris A, Croiset E, Pritzker M. Ni-samaria-doped ceria (Ni-SDC) anode-supported solid oxide fuel cell (SOFC) operating with CO [J]. Int. J. Hydrog. Energy, 2017, 42(14): 9180
3 Subbiah D, Kulandaisamy A, George R, et al. Nano ceria as xylene sensor-role of cerium precursor [J]. J. Alloys Compd., 2018, 753: 771
4 Xia Y, Lao J Z, Ye J R, et al. Role of two-electron defects on the CeO2 surface in CO preferential oxidation over CuO/CeO2 catalysts [J]. ACS Sustain. Chem. Eng., 2019, 7(22): 18421
5 Chen X J, Hu D C, Zhang Z L, et al. In situ assembly of halloysite nanotubes@cerium oxide nanohybrid for highly UV-shielding and superhydrophobic coating [J]. J. Alloys Compd., 2019, 811: 151986
6 Iqbal J, Shah N S, Sayed M, et al. Deep eutectic solvent-mediated synthesis of ceria nanoparticles with the enhanced yield for photocatalytic degradation of flumequine under UV-C [J]. J. Water Process Eng., 2020, 33: 101012
7 Krcha M D, Mayernick A D, Janik M J. Periodic trends of oxygen vacancy formation and C-H bond activation over transition metal-doped CeO2 (111) surfaces [J]. J. Catal., 2012, 293: 103
8 Chen M N, Zhang L, Gao H Y, et al. DFT+U calculation of Sm3+ and Sr2+ co-doping effect on performance of CeO2-based electrolyte [J]. Acta Phys. Sin., 2018, 67(8): 254
陈美娜, 张蕾, 高慧颖等. Sm3+, Sr2+共掺杂对CeO2基电解质性能影响的密度泛函理论+U计算 [J]. 物理学报, 2018, 67(8): 254
9 Choudhury B, Choudhury A. Ce3+ and oxygen vacancy mediated tuning of structural and optical properties of CeO2 nanoparticles [J]. Mater. Chem. Phys., 2012, 131(3): 666
10 Choudhury B, Chetri P, Choudhury A. Annealing temperature and oxygen-vacancy-dependent variation of lattice strain, band gap and luminescence properties of CeO2 nanoparticles [J]. J. Exp. Nanosci., 2015, 10: 103
11 Samai B, Bhattacharya S C. Conducting polymer supported cerium oxide nanoparticle: Enhanced photocatalytic activity for waste water treatment [J]. Mater. Chem. Phys., 2018, 220: 171
12 Phanichphant S, Nakaruk A, Channei D. Photocatalytic activity of the binary composite CeO2/SiO2 for degradation of dye [J]. Appl. Surf. Sci., 2016, 387: 214
13 Fang N, Ding Y, Liu C, et al. Role of SiO2 in synthesis of SiO2-supported CeO2 composites [J]. Ceram. Int., 2018, 44(11): 12363
14 Kruk M, Jaroniec M, Ko C H, et al. Characterization of the porous structure of SBA-15 [J]. Chem. Mater., 2000, 12(7): 1961
15 Li S J, Ma N, Zhang Y, et al. Synthesis and drug releasing effectiveness of hollow mesoporous silica nanospheres with ordered mesochannels [J]. J. Chin. Ceram. Soc., 2017, 45(3): 327
李世纪, 马宁, 张月等. 纳米级有序介孔氧化硅空心球的制备及药物缓释效果 [J]. 硅酸盐学报, 2017, 45(3): 327
16 Dai Y, Pavan K V, Zhu C, et al. Mesoporous silica-supported nanostructured PdO/CeO2 catalysts for low-temperature methane oxidation [J]. ACS Appl. Mater. Interfaces, 2017, 10(1): 477
17 Kong Y, Jiang S Y, Wang J, et al. Synthesis and characterization of Cu-Ti-MCM-41 [J]. Microporous Mesoporous Mater., 2005, 86(1-3): 191
18 Pal N, Mukherjee I, Chatterjee S, et al. Surfactant-assisted synthesis of ceria-titania-rich mesoporous silica materials and their catalytic activity towards photodegradation of organic dyes [J]. Dalton Trans., 2017, 46(29): 9577
19 Cui M Y, Yao X Q, Dong W J, et al. Template-free synthesis of CuO-CeO2 nanowires by hydrothermal technology [J]. J. Cryst. Growth., 2010, 312(2): 287
20 Pouretedal H R, Kadkhodaie A. Synthetic CeO2 nanoparticle catalysis of methylene blue photodegradation: Kinetics and mechanism [J]. Chinese J. Catal., 2010, 31(11): 1328
21 Wen X J, Niu C G, Zhang L, et al. A novel Ag2O/CeO2 heterojunction photocatalysts for photocatalytic degradation of enrofloxacin: possible degradation pathway, mineralization activity and an in depth mechanism insight [J]. Appl. Catal. B-Environ., 2018, 221: 701
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[9] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[10] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[11] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[12] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[13] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[14] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[15] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
No Suggested Reading articles found!