Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (7): 517-525    DOI: 10.11901/1005.3093.2020.579
ARTICLES Current Issue | Archive | Adv Search |
Preparation of Hollow Magnetic Graphene Oxide and Its Adsorption Performance for Methylene Blue
QUE Aizhen, ZHU Taoyu, ZHENG Yuying()
Department of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
Cite this article: 

QUE Aizhen, ZHU Taoyu, ZHENG Yuying. Preparation of Hollow Magnetic Graphene Oxide and Its Adsorption Performance for Methylene Blue. Chinese Journal of Materials Research, 2021, 35(7): 517-525.

Download:  HTML  PDF(7636KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Fe3O4 coated polystyrene microsphere (PS), namely Fe3O4@PSwas firstly fabricated by co-precipitation method with FeCl2·6H2O and FeCl3 as raw material, and PS microsphere as tempelate. Then Fe3O4@PS was immersed in toluene solution for removing the PS template. Next, the hollow Fe3O4 microsphere was coated with graphene oxide sheets under sonication to produce the hollow magnetic graphene oxide (HMGO). Subsequently, the absorption performance of the HMGO for methylene blue (MB) was assessed in an artificial waste MB solution. Results verified that the adsorption process reach to equilibrium at 55℃ after 60 min. The maximum adsorption capacity of MB on HMGO is 349.85 mg·g-1. The adsorbent shows good stability and reusability, after 8 times recycling the adsorption rate is still higher than 80%. The adsorption process of MB on HMGO can be well fitted by Pseudo-second-order kinetic model and the adsorption rate is sensitive to the initial concentration. The adsorption isotherm conforms to the Langmuir isotherm model, and the adsorption process is a single-layer surface adsorption.

Key words:  composite      adsorption      hollow graphene oxide      magnetic      methylene blue     
Received:  04 January 2021     
ZTFLH:  X703.5  
Fund: the Scientific and Technological Innovation Project of Fujian Province(2012H6008);Scientific and Technological Innovation Project of Fuzhou City(2013-G-92)
About author:  ZHENG Yuying, Tel: 18959111811, E-mail: yyzheng@fzu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.579     OR     https://www.cjmr.org/EN/Y2021/V35/I7/517

Fig.1  effect ofBefore HMGO adsorbs MB (a), After HMGO adsorbs MB (b) and Magnet separation HMGO (c)
Fig.2  Infrared spectrum of Fe3O4, GO and HMGO
Fig.3  X-ray diffraction patterns of GO, Fe3O4 and HMGO
Fig.4  Scanning electron micrographs of PS microspheres、Fe3O4、Fe3O4@PS、HMGO (a~d), and EDS images of HMGO (e~g)
Fig.5  particle size distribution of PS microspheres (a), Fe3O4 (b) and HMGO (c)
Fig.6  Effects of Adsorption time on methylene blue removal
Fig.7  Adsorption kinetic curve fitting (a) pseudo-first-order kinetics (b) pseudo-second-order kinetics
Pseudo-first-orderPseudo-second-order
k1/min-1qe/mg·g-1R12k2 /g·mg-1·min-1qe/mg·g-1R22
0.025197.310.95450.0002347.220.996
Table 1  Parameters of pseudo first-order and second-order kinetics equations of HMGO
Fig.8  Effects of initial concentrations on methylene blue removal
Fig.9  Curve fitting of adsorption isotherm (a) Langmuir adsorption isotherm equation (b) Freundlich adsorption isotherm equation
Langmuir adsorption isotherm equationFreundlich adsorption isotherm equation
kL/L·g-1qm/mg·g-1RL2kf1/nRF2
2.89352.110.9999199.140.190.6927
Table 2  Langmuir and Freundlich models parameters of HMGO
Fig.10  Effects of adsorption temperature on methylene blue removal
Fig.11  Adsorption thermodynamic curve fitting
T/KΔH/kJ·mol-1ΔS/J·mol-1·K-1ΔG/kJ·mol-1
288.1550.63239.54-18.39
298.15-20.79
308.15-23.18
318.15-25.58
328.15-27.85
Table 3  Thermodynamic parameters of HMGO
Fig.12  Effect of cycle time on the adsorption capacity of MB
1 Rafatullah M, Sulaiman O, Hashim R, et al. Adsorption of methylene blue on low-cost adsorbents: A review [J]. J. Hazard. Mater., 2010, 177(1-3): 70
2 Guo J Y,Gan P F,Chen C,et al. Preparation of magnetic chitosan and its application in the treatment of methylene blue wastewater [J]. Chin. Environ. Science., 2019, 39(6): 2422
郭俊元, 甘鹏飞, 陈诚等. 磁性壳聚糖的制备及处理亚甲基蓝废水 [J]. 中国环境科学, 2019, 39(6): 2422
3 Crini G, Lichtfouse E, Wilson L D, et al. Conventional and non-conventional adsorbents for wastewater treatment [J]. Environ. Chem. Lett., 2019, 17:195
4 Yao Y J, Xu F F, Chen M, et al. Adsorption behavior of methylene blue on carbon nanotubes [J]. Bioresource Technol., 2010,101(9): 3040
5 Zhou L, Gao C, Xu W J. Magnetic dendritic materials for highly efficient adsorption of dyes and drugs [J]. Acs. Appl. Mater. Inter., 2010, 2(5): 1483
6 Altenor S, Carene B, Emmanuel E, et al. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation [J]. J. Hazard. Mater., 2009, 165(1-3): 1029
7 Mak S Y, Chen D H. Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles [J]. Dyes. Pigments., 2004, 61(1): 93
8 Gupta V K, Suhas. Application of low-cost adsorbents for dye removal-A review [J]. J. Environ. Manage., 2009, 90(8): 2313
9 Lu N, He G, Liu J X, et al. Combustion synthesis of graphene for water treatment [J]. Ceram. Int., 2018, 44(2): 2463
10 Xiao W Q,Huang H,Chen L, et al. Preparation and heat treatment of nanocomposites of PBT/graphene oxide [J]. Chin. J. Mater. Res., 2019, 33(02): 95
肖文强, 黄欢, 陈林等. PBT/氧化石墨烯纳米复合材料的制备及热处理 [J]. 材料研究学报, 2019, 33(02): 95
11 Zhao W Y, Wang Z X,Zheng Y Y, et al. Electrochemical performance of NiS2/3D porous reduce graphene oxide composite as electrode material for supercapacitors [J]. Acta Mater. Compositae Sin. [J]., 2020, 37(2): 422
赵文誉, 王振祥, 郑玉婴等. NiS/三维多孔石墨烯复合材料作为超级电容器电极材料的电化学性能 [J]. 复合材料学报, 2020, 37(2): 422
12 Li Y H, Du Q J, Liu T H, et al. Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes [J]. Chem. Eng. Res. Des., 2013, 91(2): 361
13 Wu Y, Luo H J, Wang H, et al. Adsorption properties of modified graphene for methylene blue removal from wastewater [J]. Environ. Sci., 2013, 34(11): 4333
吴艳, 罗汉金, 王侯等. 改性石墨烯对水中亚甲基蓝的吸附性能研究 [J]. 环境科学, 2013, 34(11): 4333
14 Yang S T, Chen S, Chang Y, et al. Removal of methylene blue from aqueous solution by graphene oxide [J]. J. Colloid. Interf. Sci., 2011, 359(1): 24
15 Balkız G, Pingo E, Kahya N, et al. Graphene oxide/alginate quasi-cryogels for removal of methylene blue [J]. Water. Air. Soil. Pollut., 2018, 229: 131
16 Li R R, Huang H, Dong X L,et al. Adsorption performance of methylene blue onto nanoparticles of carbon-encapsulated magnetic nickel [J]. Chin. J. Mater. Res., 2015, 29(09): 663
李冉冉, 黄昊, 董星龙等. 碳包覆磁性镍纳米粒子对亚甲基蓝的吸附性能 [J]. 材料研究学报, 2015, 29(09): 663
17 Adel M, Ahmed M A, Mohamed A A. Synthesis and characterization of magnetically separable and recyclable crumbled MgFe2O4/reduced graphene oxide nanoparticles for removal of methylene blue dye from aqueous solutions [J]. J. Phys. Chem. Solids., 2021, 149: 109760
18 Othman N H, Alias N H, Shahruddin M Z, et al. Adsorption kinetics of methylene blue dyes onto magnetic graphene oxide [J]. J. Environ. Chem. Eng., 2018, 6(2): 2803
19 Gu F B, Liang M, Dong M H, et al. Multifunctional sandwich-like mesoporous silica-Fe3O4-graphene oxide nanocomposites for removal of methylene blue from water [J]. Rsc. Adv., 2015, 5(50): 39964
20 Hosseinzadeh H, Hosseinzadeh S, Pashaei S. Fabrication of novel magnetic graphene oxide nanocomposites for selective adsorption of mercury from aqueous solutions [J]. Environ. Sci. Pollut. Res., 2019, 26: 26807
21 Sun Z W, Srinivasakannan C, Liang J S, et al. Preparation of hierarchical magnesium silicate with excellent adsorption capacity [J]. Ceram. Int., 2019, 45(4): 4590
22 Chen P, Cao Z F, Wen X, et al. In situ nano-silicate functionalized graphene oxide composites to improve MB removal [J]. J. Taiwan. Inst. Chem. Eng., 2017, 81: 87
23 Dai H J, Huang Y, Huang H H,et al. Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue [J]. Carbohyd. Polym., 2018, 185: 1
24 Pan Y Y. The modification of magnetic chitosan and the research on simulated wastewater [D]. Taiyuan:North University of China, 2013
潘媛媛.磁性壳聚糖的改性及其对模拟废水的处理研究 [D]. 太原: 中北大学, 2013
25 Xu J, Li S S, Wang F, et al. Efficient and enhanced adsorption of methylene blue on triethanolamine-modified graphene oxide [J]. J. Chem. Eng. Data., 2019, 64(4): 1816
26 Sarkar C, Basu J K, Samanta A N. Removal of Ni2+ ion from waste water by geopolymeric adsorbent derived from LD slag [J]. J. Water. Process. Eng., 2017, 17: 237
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[4] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[5] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[6] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[7] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[8] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[9] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[10] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[11] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[12] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[13] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[14] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[15] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
No Suggested Reading articles found!