Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (1): 35-42    DOI: 10.11901/1005.3093.2019.326
ARTICLES Current Issue | Archive | Adv Search |
Vacuum Low-pressure Carburization of Gear Steel 16Cr3NiWMoVNbE for Aviation
WANG Bin,HE Yanping,WANG Haojie,TIAN Yong(),JIA Tao,WANG Bingxing,WANG Zhaodong
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819,China
Cite this article: 

WANG Bin,HE Yanping,WANG Haojie,TIAN Yong,JIA Tao,WANG Bingxing,WANG Zhaodong. Vacuum Low-pressure Carburization of Gear Steel 16Cr3NiWMoVNbE for Aviation. Chinese Journal of Materials Research, 2020, 34(1): 35-42.

Download:  HTML  PDF(15259KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The combined process of vacuum low-pressure carburizing heat treatment for aviation gear steel 16Cr3NiWMoVNbE was investigated, with the emphasis on the effect of carburizing, quenching, cryogenic treatment and tempering process on the microstructure and mechanical properties of the steel. The results show that after carburizing and quenching, the cross sectional microstructure of the steel, can be differentiated as carbide region, mixed region of carbide and acicular martensite, acicular martensite region and lath martensite region from the surface to the center. A large number of blocky Cr carbides precipitated at grain boundaries in the carbide region, where very little Ni can be detected. The fine precipitates in the acicular martensite and the lath martensite matrix are carbides of the microalloying elements Nb, V, and Mo. After the carburization, the carbon concentration of the carburized steel decreases gradually from the surface to the center, correspondingly, the hardness increased first and then decreased, and the depth of carburized layer was 0.95 mm. The subzero treatment at -70oC promotes the transformation of retained austenite to martensite, which greatly improves the overall hardness of the carburized steel.

Key words:  metallic materials      vacuum carburizing      aviation gear steel      carburized case hardness      retained austenite      carbide     
Received:  03 July 2019     
ZTFLH:  TG156.8  
Fund: National Natural Science Foundation of China(51604074);Fundamental Research Funds for the Central Universities(N170704012);Open Project of State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University(SKLASS 2019-02)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.326     OR     https://www.cjmr.org/EN/Y2020/V34/I1/35

CMnSiNiCrWV
0.1920.5970.6981.062.691.020.403
MoNbCeFePSCu
0.4360.1560.00792.40.0100.0020.020
Table 1  Chemical composition of the experimental steel(mass fraction, %)
Fig.1  Experimental process diagram
Fig.2  Original microstructure
Fig.3  Vacuum carburizing process
Fig.4  Carburized case microstructure
Fig.5  OM images of 16Cr3NiWMoVNbE steel after carburizing and quenching (a) carbide region (b) mixed region (c) acicular martensite region (d) lath martensite region
Fig.6  SEM images of 16Cr3NiWMoVNbE steel carbides carburizing and quenching (a) carbide region (b) mixed region (c) acicular martensite region (d) lath martensite region
Fig.7  Mole fraction of all phases
Fig.8  Elemental changes from surface to substrate (a) linear scanning direction (b) elemental spectrum
Fig.9  Spectra of each chromatogram after carburization (a) (c) (e) carbides in carbide region, acicular martensite region and lath martensite region, respectively (b) (d) (f) corresponding energy dispersive analysis
Fig.10  Analysies of acicular martensite and its precipitate elements (a) microstructure (b) C (c) Cr (d) Mo (e) Nb (f) V (g) W (h) Ni
Fig.11  Hardness of 16Cr3NiWMoVNbE steel after carburizing+quenching and after cryogenic treatment according to Fig.1
Fig.12  High temperature tensile curves of test steel after carburizing
[1] Teng B Q, Chang C J. New material for aeroengine-16Cr3NiWMoVNbE gear steel [J]. Aeroengine, 2003, 29(2): 34
[1] (滕佰秋, 常春江. 航空发动机用新材料-16Cr3NiWMoVNbE齿轮钢 [J]. 航空发动机, 2003, 29(2): 34)
[2] Zhang Z Y. Research and development of aeronautical high performance gear steel [J]. J. Aero. Mater., 2000, 20(3): 148
[2] (赵振业. 航空高性能齿轮钢的研究与发展 [J]. 航空材料学报,2000, 20(3): 148)
[3] Chen N. Improvement of carburizing process of 16Cr3NiWMoVNbE gear [J]. Mechanical Engineer, 2016, (8): 162
[3] (陈娜. 16Cr3NiWMoVNbE齿轮渗碳工艺改进 [J]. 机械工程师,2016, (8): 162)
[4] Wang X D, Xia G F, Tang D F, et al. A Preliminary Analysis on High Performance Aero-engine Accessory Gear and Gear Material [J]. Gas Turbine Experiment and Research, 2001, 14(4): 42
[4] (王旭东, 夏国荣, 唐登发等. 高性能发动机附件传动齿轮及齿轮材料浅析 [J]. 燃气涡轮试验与研究, 2001, 14(4): 42)
[5] Yin L C, Ma X X, Tang G Z, et al. Characterization of carburized 14Cr14Co13Mo4 stainless steel by low pressure carburizing [J]. Surface and Coatings Technology, 2019, 358: 654
[6] Xie C, Zhu G Y, Xun D, et al. Simulation of carburizing quenched microstructure and thermo-physical mechanical properties for 16Cr3NiWMoVNbE steel [J]. Journal of Hunan University of Science & Technology, 2018, 33(1): 78
[6] (谢成, 朱戈阳, 寻丹等. 16Cr3NiWMoVNbE渗碳淬火组织与热物理力学性能的数值模拟 [J]. 湖南科技大学学报, 2018, 33(1): 78)
[7] Yu C H, Zhang S Z, Li Y. Low cycle fatigue behaviors of structural steel 16Cr3NiWMoVNbE at different temperatures [J]. Materials for Mechanical Engineering, 2014, 38(2): 44
[7] (于慧臣, 张仕朝, 李 影. 不同温度下16Cr3NiWMoVNbE结构钢的低周疲劳行为 [J]. 机械工程材料, 2014, 38(2): 44)
[8] Tang W C. Current status of materials for aero-engine gears in china [J]. J. Aero. Mater., 2003, 23(suppl. issue):283
[8] (汤万昌. 我国航空发动机齿轮材料的现状 [J]. 航空材料学报, 2003, 23(增刊): 283)
[9] Zhang W S, Zhou X L, Li H R, et al. Study on carburizing process for new-type 16Cr3NiWMoVNbE gear steel and its properties [J]. Mater. Heat Treat., 2010, 39(24): 216
[9] (张文帅, 周贤良, 李晖榕等. 新型16Cr3NiWMoVNbE齿轮钢渗碳工艺与性能研究 [J]. 材料热处理技术, 2010, 39(24): 216)
[10] Shao S Y. Study on production process and performance of carburized gear steel 16Cr3NiWMoVNbE for Aeroengine [D]. Shenyang: Northeastern University, 2006
[10] (邵淑艳. 航空发动机用渗碳齿轮钢 16Cr3NiWMoVNbE 生产工艺及性能的研究 [D]. 沈阳:东北大学, 2006)
[11] Zhu Z C, Xu W, Wang H. Novel development of carburizing and nitriding technology at home and abroad [J]. Heat Treatment Technology and Equipment, 2013, 35(5): 1
[11] (朱祖昌, 许 雯, 王 洪. 国内外渗碳和渗氮热处理工艺的新进展(二) [J]. 热处理技术与装备, 2013, 35(5): 1)
[12] Gawronski Z, Malasinski A, Sawicki J. Elimination of galvanic copper plating process used in hardening of concentionally carburized gear wheels [J]. Inter. J. Auto. Technol., 2010, 11(1): 127
[13] Sun Z L, Zhang X, Xin Y W, et al. Effect of carburizing method on carburized layer of 18Cr2Ni4A steel gear [J]. Heat Treatment of Metals, 2015, 40(12): 128
[13] (孙振淋, 张 茜. 渗碳方式对18CrNi4A钢齿轮渗层的影响 [J]. 金属热处理, 2015, 40(12): 128)
[14] Xie C, Zhou L M, Min N, et al. Effect of deep cryogenic treatment on carbon partition of tempered high carbon high alloy tool steel SDC99 [J]. Chinese Journal of Materials Research, 2016, 30(11): 801
[14] (谢 尘, 周龙梅, 闵 娜等. 深冷处理对高碳高合金工具钢 SDC99 回火过程碳配分的影响 [J]. 材料研究学报, 2016, 30(11): 801)
[15] Ishida K. Calculation of the effect of alloying elements on the Ms temperature in steels [J]. Journal of Alloys and Compounds, 1995, 220(1-2): 126
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!