Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (1): 43-49    DOI: 10.11901/1005.3093.2019.401
ARTICLES Current Issue | Archive | Adv Search |
Effect of Copolymer Chain Structure on Properties of Fluorinated Copolyimide Film
ZHANG Mingyan1,2,LIU Ju2,YANG Zhenhua2,WANG Denghui2,WU Zijian1,2()
1. Harbin University of Science and Technology, Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin 150080, China
2. School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
Cite this article: 

ZHANG Mingyan,LIU Ju,YANG Zhenhua,WANG Denghui,WU Zijian. Effect of Copolymer Chain Structure on Properties of Fluorinated Copolyimide Film. Chinese Journal of Materials Research, 2020, 34(1): 43-49.

Download:  HTML  PDF(1736KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

4,4'-diamino-2,2'-bistrifluoromethylbiphenyl (TFMB), 4,4'-(hexafluoroisopropene) diacetic anhydride (6FDA) and 3,3',4 4'-biphenyltetracarboxylic dianhydride (BPDA) were used as the reactive monomer, a series of fluorinated copolyimide films were prepared by changing the proportion and feeding method of non -fluorinated monomer BPDA. The properties of the films were characterized and analyzed. The results show that both the feeding method and the proportion of BPDA in the dianhydride monomer can affect the properties of the films. The prepared fluorinated copolyimide films are soluble in the aprotic polar solvent at room temperature, and the film have a high light transmittance in the visible light range. As the content of non-fluorinated dianhydride monomer BPDA increased the optical properties of the film decrease slightly, while the thermal properties and mechanical tensile properties were improved. When the proportion of non-fluorinated dianhydride monomer is 68.97%, the transmittance of the prepared copolyimide film still maintains in 96.01% at 500 nm; When the non-fluorinated dianhydride monomer account for 35.71% of the dianhydride monomer, the thermal decomposition temperature at a weight loss of 10% of the prepared copolyimide film is 595.23℃, correspondingly the tensile strength is 100.98 MPa. The change of feeding mode of BPDA have different effect on the optical properties, mechanical properties and mechanical tensile properties of the copolyimide film.

Key words:  organic polymer materials      fluorinated PI film      transmittance      copolymerization      soluble     
Received:  14 August 2019     
ZTFLH:  TQ324  
Fund: Key Laboratory of Engineering Dielectrics and Applications Ministry of Education 2017 Pre-research Fund(2018EDAQY05);Harbin Science and Technology Innovation Talent Project(2017-RAQXJ105);Youth Innovative Talents Training Program of Heilongjiang General Undergraduate Higher Education(UNPYSCT-2018214)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.401     OR     https://www.cjmr.org/EN/Y2020/V34/I1/43

Fig.1  Synthetic routes for Co-PI
NumberDianhydride Monomer Molar RatioBPDA Feeding Frequency
PI-1an(6FDA):n(BPDA) =0.45:11
PI-1bn(6FDA):n(BPDA) =0.45:12
PI-1cn(6FDA):n(BPDA) =0.45:14
PI-2an(6FDA):n(BPDA) =0.90:11
PI-2bn(6FDA):n(BPDA) =0.90:12
PI-2cn(6FDA):n(BPDA) =0.90:14
PI-3an(6FDA):n(BPDA) =1.80:11
PI-3bn(6FDA):n(BPDA) =1.80:12
PI-3cn(6FDA):n(BPDA) =1.80:14
Table 1  Dianhydride Monomer ratio
Fig.2  Chain structures that may exist in copolymers (A represents TFMB monomer, B represents 6FDA monomer, and C represents BPDA monomer)
Fig.3  Infrared absorption spectra of fluorine-containing PI films
Fig.4  Infrared absorption spectra of fluorine-containing PI films
NumberNMPDMAcDMFTHFMeOH
PI-1a+++++-+-
PI-1b++++++-
PI-1c+++++-+-
PI-2a++++++-
PI-3a++++++-
Table 2  Solubility data of fluorine-containing PI films
Fig.5  UV-Vis spectra of fluorine-containing PI films
Numberλcut-off/nmσ450/%σ500/%
PI-1a36291.7796.01
PI-1b36389.4893.62
PI-1c36282.8991.40
PI-2a36393.9396.90
PI-3a36793.5197.30
Table 3  Optical properties of fluorine-containing PI films
Fig.6  Thermogravimetric curves of fluorine-containing PI films
NumberTd5%/℃Td10%/℃Rw/%
PI-1a569.87607.7557.92
PI-1b576.37612.8158.82
PI-1c573.12611.4758.11
PI-2a573.89607.2555.33
PI-3a567.37595.2354.65
Table 4  Thermal performance of fluorine-containing PI films
NumberTensile strength/MPaElongation at break/%
PI-1a113.453.13
PI-1b117.612.95
PI-1c114.163.09
PI-2a113.333.22
PI-3a100.983.63
Table 5  Tensile properties of fluorine-containing PI films
[1] Ren X L, Xing L X, Wang L, et al. Industry and product development of polyimide films in Taiwan of China [J]. Insulat. Mater., 2014, 47(4): 17
[1] (任小龙, 邢利欣, 王林等. 中国台湾地区聚酰亚胺薄膜工业及产品发展概况 [J]. 绝缘材料, 2014, 47(4): 17)
[2] Liu J G, Ni H J, Fang G Q, et al. New progress of manufacturing technology for functional polyimide films [J]. Insulat. Mater., 2015, 48(1): 1
[2] (刘金刚, 倪洪江, 房光强等. 特种聚酰亚胺薄膜制备技术新进展 [J]. 绝缘材料, 2015, 48(1): 1)
[3] Yang Y, Park J H, Jung Y, et al. Effect of fluorination on haze reduction in transparent polyimide films for flexible substrates [J]. J. Appl. Polym. Sci., 2017, 134: 44375
[4] Xiao T C, Xiang F, Fan D S, et al. High thermal conductivity and low absorptivity/ emissivity properties of transparent fluorinated polyimide films [J]. Polym. Bullet., 2017, 74: 4561
[5] Nam K H, Dowan K, Seo J, et al. Effect of tetrapod ZnO whiskers on the physical and moisture barrier properties of transparent polyimide/TZnO-W composite films [J]. Macromol. Res., 2014, 22: 1243
[6] Kim S K, Wang X Y, Ando S, et al. Highly transparent triethoxysilane-terminated copolyimide and its SiO2 composite with enhanced thermal stability and reduced thermal expansion [J]. Eur. Polym. J., 2015, 64: 206
[7] Kim J C, Chang J H. Quaternary copolyimides with various monomer contents: Thermal property and optical transparency [J]. Macromol. Res., 2014, 22: 1178
[8] Min U, Chang J H. Colorless and transparent polyimide nanocomposite films containing organoclay [J]. J. Nanosci. Nanotechnol., 2011, 11: 6404
[9] Damaceanu M D, Constantin C P, Nicolescu A, et al. Highly transparent and hydrophobic fluorinated polyimide films with ortho-kink structure [J]. European Polymer Journal, 2014, 50: 200
[10] Huang X H, Pei X L, Mei M, et al. Preparation and characterization of soluble fluorinated polyimide films [J]. Polym. Mater. Sci. Eng., 2016, 32(3): 147
[10] (黄孝华, 裴响林, 梅媚等. 可溶性含氟聚酰亚胺薄膜的制备及表征 [J]. 高分子材料科学与工程, 2016, 32(3): 147)
[11] Yu H C, Kumar S V, Lee J H, et al. Preparation of robust, flexible, transparent films from partially aliphatic copolyimides [J]. Macromol. Res., 2015, 23: 566
[12] Ni H J, Liu J G, Wang Z H, et al. A review on colorless and optically transparent polyimide films: Chemistry, process and engineering applications [J]. J. Ind. Eng. Chem., 2015, 28: 16
[13] Yu H C, Jung J W, Choi J Y, et al. Kinetic study of low‐temperature imidization of poly(amic acid)s and preparation of colorless, transparent polyimide films [J]. J. Polym. Sci., 2016, 54A: 1593
[14] Shen J L, Li F, Cao Z H, et al. Light scattering in nanoparticle doped transparent polyimide substrates [J]. ACS Appl. Mater. Interfaces, 2017, 9: 14990
[15] Tsai C L, Yen H J, Liou G S. Highly transparent polyimide hybrids for optoelectronic applications [J]. React Funct. Polym., 2016, 108: 2
[16] Wang C X, Chen W, Chen Y H, et al. Preparation and properties of polyimide film with high strength and high transparency [J]. Insulat. Mater., 2018, 51(3): 31
[16] (汪聪茜, 陈薇, 陈妤红等. 高强度高透明性聚酰亚胺膜的制备与性能研究 [J]. 绝缘材料, 2018, 51(3): 31)
[17] Su X C, Cao X F, Lu Y H, et al. Synthesis and properties of ODPA/ODA/BAHPP copolyimides containing hydroxyl groups [J]. Insulat. Mater., 2017, 50(4): 1
[17] (苏骁驰, 曹雪峰, 鲁云华等. ODPA/ODA/BAHPP含羟基共聚聚酰亚胺的合成与性能研究 [J]. 绝缘材料, 2017, 50(4): 1)
[18] He S C, Huang J. Synthesis and properties of soluble colorless transparent copolymerized polyimide based on FFDA-PMDA-ODA [J]. Guangzhou Chem. Ind., 2017, 45(1): 36
[18] (何思呈, 黄杰. 可溶性无色透明FFDA-PMDA-ODA共聚聚酰亚胺的合成与性能 [J]. 广州化工, 2017, 45(1): 36)
[1] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[5] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[6] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[7] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[8] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[9] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[10] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[11] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[12] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
[13] WAN Liying, XIAO Yang, ZHANG Lunliang. Preparation and Properties of PU-DA System Based on Thermoreversible Diels-Alder Dynamic Covalent Bond[J]. 材料研究学报, 2021, 35(10): 752-760.
[14] ZHANG Cuige, HU Liang, LU Zuxin, ZHOU Jiahui. Preparation and Emulsification Properties of Self-assembled Colloidal Particles Based on Alginic Acid[J]. 材料研究学报, 2021, 35(10): 761-768.
[15] HUANG Jian, LIN Chunxiang, CHEN Ruiying, XIONG Wanyong, WEN Xiaole, LUO Xin. Ionic Liquid-assisted Synthesis of Nanocellulose Adsorbent and Its Adsorption Properties[J]. 材料研究学报, 2020, 34(9): 674-682.
No Suggested Reading articles found!