Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (1): 29-34    DOI: 10.11901/1005.3093.2019.323
ARTICLES Current Issue | Archive | Adv Search |
Fatigue Properties and Strength Assessment for Al-Si-Mg Alloy via Test Samples with Artificial Defects
YI Kejian1,WU Mingze1,ZHANG Jiwang1(),YAN Junfang2,MEI Guiming1,ZHU Shoudong1,SU Kaixin1
1. State Key Laboratory of Traction Power,Southwest Jiaotong University,Chengdu 610031, China
2. Bj-baodeli Electrical Equipment Corporation,Baoji 721000, China
Cite this article: 

YI Kejian,WU Mingze,ZHANG Jiwang,YAN Junfang,MEI Guiming,ZHU Shoudong,SU Kaixin. Fatigue Properties and Strength Assessment for Al-Si-Mg Alloy via Test Samples with Artificial Defects. Chinese Journal of Materials Research, 2020, 34(1): 29-34.

Download:  HTML  PDF(3743KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Artificial defects of different size were introduced on rotary bending fatigue test samples of Al-7Si-0.6Mg Al-alloy, which is the desired material for the high-speed railway contact net support and positioning device. The influence of defect sizes on the fatigue strength of the alloy was examined via rotating bending fatigue machine, while the quantitative relationship between fatigue strength and defect size was established. The results show that the larger the artificial defect size, the greater the decrease of the high cycle fatigue strength of the sample. The artificial defect size of less than 370 μm has no effect on the high cycle fatigue strength of the alloy; The modified Murakami formula can be applied for more accurate evaluation of the high cycle fatigue strength and stress intensity factor threshold of Al-7Si-0.6Mg Al-alloy within the range of applicability conditions.

Key words:  metallic materials      Al-7Si-Mg alloy      artificial defect      fatigue performance      modified Murakami formula     
Received:  02 July 2019     
ZTFLH:  TU512.4  
Fund: National Natural Science Foundation of China(U1534209)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.323     OR     https://www.cjmr.org/EN/Y2020/V34/I1/29

AlloySiMnFeCuNiZnTiMgCrAl
Al-7Si-0.6Mg7.050.00190.151<0.00500.00920.00680.1930.5610.029Bal.
Table 1  Chemical composition of Al-7Si-0.6Mg casting alloy (mass fraction, %)
Fig.1  Rotary bending fatigue specimen shape and size (mm)
Fig.2  Artificial defect schematic
Serial numberDiameter=Depth(d=h)Top angle(θ)area
1400120°370
2600120°555
3800120°740
41000120°925
Table 2  Artificial defect size (μm)
Fig.3  S-N curves of Al-7Si-Mg sample

Serial

number

area

/μm

σ5×107

/MPa

Reduction rate

/%

1370800
2555756.25
37407012.5
49256025
Table 3  Artificial defect sample fatigue strength
Fig.4  Drilled specimen fatigue fracture in different sizes (a) 925 μm drilled specimen–70 MPa stress level; (b) 370 μm drilled specimen–90 MPa stress level
Fig.5  Comparison of crack source of 370 μm drilled specimen: (a) artificial defect crack source; (b) section crack source
Fig.6  Crack source of smooth specimen
Serial numberarea/μmσ5×107/MPa

σ107

/MPa

σw

/MPa

σ5×107/σwσ107/σw
1370808091.60.870.87
2555757585.60.880.88
3740707581.60.860.91
4925607078.60.760.89
Table 4  Comparison of predicted results and experimental results of Ueno formula for Al-7Si-0.6Mg samples
Fig.7  Kitagawa-Takahashi curve of Al-7Si-Mg alloy sample with artificial defects
Serial number

area

/μm

σ5×107

/MPa

σw/MPaσ5×107/σwError/%
13708079.311.010.86
25557574.131.011.16
37407070.660.990.94
49256068.080.8813.47
Table 5  Comparison of prediction results of modified formulas of Al-7Si-0.6Mg samples with artificial defects and experimental results
Serial numberarea/μmKth/MPa·mKM/MPa·mKU/MPa·m
13703.545.84(64.97%)3.83(8.19%)
25554.076.69(64.37%)4.38(7.62%)
37404.397.36(67.65%)4.82(9.79%)
49254.207.93(88.81%)5.20(23.81%)
Table 6  Kth calculation results for Al-7Si-0.6Mg samples with artificial defects (predicted error in parentheses)
Fig.8  Effect of artificial defect size on Kth
Serial numberarea/μm

Kth

/MPa·m

Kth'/MPa·m

Error

/%

13703.543.520.56
25554.074.030.98
37404.394.441.14
49254.204.7813.81
Table 7  Comparison of experimental calculations Kth and revised prediction formula prediction results
[1] Fan Y H, Liu S H, Wang Y, et al. Application of ENAC-AlSi7Mg0.6 aluminium alloy for railway contact network [J]. Hot Working Technology, 2015, (7): 108
[1] (范玉虎, 刘少鸿, 汪 勇等. 铁路网用ENAC-AlSi7Mg0.6铝合金的应用研究 [J]. 热加工工艺, 2015(7): 108)
[2] Qi G F. Thought on increasing reliability of PDL catenary [J]. China Railway, 2005, (09): 29
[2] (戚广枫. 提高客运专线接触网可靠性的思考 [J]. 中国铁路, 2005, (09): 29)
[3] Huo W S. Analysis on the damage and influence of alternating stress on contact net equipment and parts [A]. Selected Works of the Excellent Academic Papers of the 2007 Academic Activities of the Henan Railway Society [C]. 2007, (7): 391
[3] (霍文森. 浅析交变应力对接触网设备、零部件的破坏及影响 [A]. 河南省铁道学会2007年学术活动月优秀论文选集 [C]. 2007, (7): 391)
[4] Liu Y Q, Jie W Q, Wang S N, et al. Investigation of rotating bending gigacycle fatigue properties of Al-7Si-0.3Mg alloys [J]. Chinese Journal of Materials Research, 2012, 26(3): 284
[4] (刘永勤, 介万奇, 王善娜等. Al-7Si-0.3Mg铸造合金的旋转弯曲疲劳性能研究 [J]. 材料研究学报, 2012, 26(3): 284)
[5] Zhu Z Y, He G Q, Ding X Q, et al. Low cycle fatigue behavior of cast aluminum alloy ZL101 under multi-axial loading [J]. The Chinese Journal of Nonferrous Metals, 2007, 17(6): 916
[5] (朱正宇, 何国求, 丁向群等. 多轴载荷下ZL101铝合金的低周疲劳行为 [J]. 中国有色金属学报, 2007, 17(6): 916)
[6] Atxaga G, Pelayo A, Irisarri A M.Effect of microstructure on fatigue behaviour of cast Al-7Si-Mg alloy [J]. Materials Science & Technology, 2013, 17(4): 446
[7] Jiang X S, He G Q, Liu B, et al. Microstructure-based analysis of fatigue behaviour of Al-Si-Mg alloy [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(3): 443
[8] Jiang X S, He G Q, Liu B, et al. Fatigue behavior and microstructure evolution of Al-Mg-Si alloy under constant and variable amplitude loadings [J]. Rare Metal Materials & Engineering, 2010, 39(3): 459
[9] Jiang X S, He G Q, Liu B, et al. Fatigue characteristics and microcosmic mechanism of Al-Si-Mg alloys under multiaxial proportional loadings [J]. International Journal of Minerals, Metallurgy and Materials, 2011, 18(4): 437
[10] Jiang H, Bowen P, Knott J F.Fatigue performance of a cast aluminium alloy Al-7Si-Mg with surface defects [J]. Journal of Materials Science, 1999, 34(4): 719
[11] Lados D A, Apelian D.Fatigue crack growth characteristics in cast Al-Si-Mg alloys:Part I.Effect of processing conditions and microstructure [J]. Materials Science & Engineering A, 2004, 385(1): 200
[12] Lados D A, Apelian D.Fatigue crack growth characteristics in cast Al-Si-Mg alloysPart II.Life predictions using fatigue crack growth data [J]. Materials Science & Engineering A, 2004, 385(1): 187
[13] Wu M Z, Zhang J W, Zhang Y B, et al. Effects of Mg Content on the Fatigue Strength and Fracture Behavior of Al-Si-Mg Casting Alloys [J]. Journal of Materials Engineering and Performance, 2018, 27(11): 5992
[14] Murakami Y, Metal Fatigue:Effects of small defects and nonmetallic inclusions [J]. Materials and Corrosion:2003, 54(3): 198
[15] Ueno A, Nishida M, Miyakawa S, et al.Fatigue limit estimation of aluminum die-casting alloy by means of area method [J]. Journal of the Society of Materials Science, 2014, 63(12): 844
[16] Ueno A, Nishida M, Miyakawa S, et al. ΔKth estimation of aluminum die-casting alloy by means of area method [J]. Recent Advances in Structural Integrity Analysis-Proceedings of the International Congress (APCF/SIF-2014, 2014: 99
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!