Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (1): 25-32    DOI: 10.11901/1005.3093.2016.747
ARTICLES Current Issue | Archive | Adv Search |
Lubricating Property of Water Based Lubricant of Konjac Glucomannan
Xuelian QI, Qianqian ZHANG, Dezun SHENG, Xiaolei LI, Huichen ZHANG()
Transportation Equipments and Ocean Engineering College, Dalian Maritime University, Dalian 116026, China
Cite this article: 

Xuelian QI, Qianqian ZHANG, Dezun SHENG, Xiaolei LI, Huichen ZHANG. Lubricating Property of Water Based Lubricant of Konjac Glucomannan. Chinese Journal of Materials Research, 2018, 32(1): 25-32.

Download:  HTML  PDF(3603KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The lubricating property of water-based lubricant of konjac glucomannan (KGM) was assessed for the contact surface of quartz to quartz. The molecular structure of konjac glucomannan was analyzed by Fourier transform infrared spectroscopy. The surface topographies of the worn quartz surface after sliding-wear were examined by LEXT OLS4000 3D microscope. The friction performance of the friction-pair of quartz against quartz was evaluated by the CETR Universal Micro-Tribometer (UMT-2). The lubricating property of KGM solutions was then analyzed. The results show that the 0.3% KGM solution possesses the best lubricity, in the presence of which the friction-pair of quartz exhibits a friction coefficient about 0.002. The frictional coefficient of the friction-pair of quartz varied with the KGM concentration of the solution, as well as the relatively rotating speed of the components of the friction-pair. By adding saturated boric acid to the solution, the hydration layer of KGM was promoted due to the coordination compound which was generated by the chemical reaction between the boric acid and the KGM molecules. The lubricating model of KGM solution was composed of hydrationlayers of KGM and water layers, in which the former absorbed on the frictional pairs to form a lubricating film, while the water layer ensures the shear liquidity of lubricant, only the combination of the two can realize the effective lubrication.

Key words:  organic polymer material      surface and interface in the materials      skonjac glucomannan      water based lubrication      surface contact     
Received:  20 December 2016     
ZTFLH:  TG356.16  
Fund: Supported by National Natural Science Foundation of China (No. 51335005) and Fundamental Research Funds for the Central Universities (No. 3132016354)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.747     OR     https://www.cjmr.org/EN/Y2018/V32/I1/25

Fig.1  FTIR spectrum of the konjac glucomannan
Fig.2  Hydration molecules of konjac glucomannan
Fig.3  Variation of friction coefficient with rotational speed under different concentrations
Fig.4  Friction coefficient of 0.1% KGM solutions under different rotational speed (a) and the friction coefficient of three KGM solutions under the rotational speed of 75 r/min (b)
Fig.5  Surface topography of specimens after test (a) 0.1%, (b) 0.3%, (c) 0.5%
Fig.6  Different friction reduction models for the three solutions (a) 0.1%, (b) 0.3%, (c) 0.5%
Fig.7  Friction coefficient of different solution
Fig.8  Surface topography of specimens after test (a) saturated boric acid solution lubrication, (b) arum and boric acid mixture lubrication
Fig.9  Illustration for the reaction of KGM and boric acid
Fig.10  FTIR spectrum and spectrum of mixed solution
Fig.11  Illustration for lubrication model of hydrated konjac glucomannan
[1] Zhang S W.Green tribology: Fundamentals and future development[J]. Friction, 2013, 1: 186
[2] Ma L R, Zhang C H, Liu S H.Progress in experimental study of aqueous lubrication[J]. Chin. Sci. Bull., 2012, 57: 2062
[3] Ma L R, Gaisinskaya-Kipnis A, Kampf N, et al.Origins of hydration lubrication[J]. Nat. Commun., 2015, 6: 6060
[4] Raviv U, Klein J.Fluidity of bound hydration layers[J]. Science, 2002, 297: 1540
[5] Klein J.Hydration lubrication[J]. Friction, 2013, 1: 1
[6] Ma Z Z, Zhang C H, Luo J B, et al.Superlubricity of a mixed aqueous solution[J]. Chinese Phys. Lett., 2011, 28: 056201
[7] Goldberg R, Schroeder A, Silbert G, et al.Boundary lubricants with exceptionally low friction coefficients based on 2D close-packed phosphatidylcholine liposomes[J]. Adv. Mater., 2011, 23: 3517
[8] Li J J, Zhang C H, Luo J B.Superlubricity behavior with phosphoric acid-water network induced by rubbing[J]. Langmuir, 2011, 27: 9413
[9] Li J J, Zhang C H, Ma L R, et al.Superlubricity achieved with mixtures of acids and glycerol[J]. Langmuir, 2013, 29: 271
[10] Sivan S, Schroeder A, Verberne G, et al.Liposomes act as effective biolubricants for friction reduction in human synovial joints[J]. Langmuir, 2010, 26: 1107
[11] Xu J, Luo J B, Liu S H, et al.Tribological characteristics of aloe mucilage[J]. Tribol. Mater. Surf. Interfaces, 2008, 2: 72
[12] Coles J M, Chang D P, Zauscher S.Molecular mechanisms of aqueous boundary lubrication by mucinous glycoproteins[J]. Curr. Opin. Colloid Interface Sci., 2010, 15: 406
[13] Sheng D Z, Zhang H C.Lubricating properties of sodium alginate as an additive for water in surface contact[J]. Tribology, 2016, 36: 380(盛德尊, 张会臣. 面接触条件下海藻酸钠的水基润滑特性[J]. 摩擦学学报, 2016, 36: 380)
[14] Arad S, Rapoport L, Moshkovich A, et al.Superior biolubricant from a species of red microalga[J]. Langmuir, 2006, 22: 7313
[15] Li J J, Zhang C H, Luo J B, et al.Excellent lubricating behavior of brasenia schreberi mucilage[J]. Langmuir, 2012, 28: 7797
[16] Liu J M, Zhang C H, Zhang C H, et al.Lubricating properties of the aqueous solution of castor oil polyoxyethylene ether[J]. Tribology, 2011, 31: 240(刘俊铭, 张晨辉, 张朝辉等. 蓖麻油聚氧乙烯醚水基润滑液摩擦学特性研究[J]. 摩擦学学报, 2011, 31: 240)
[17] Kobayashi M, Terada M, Takahara A.Polyelectrolyte brushes: A novel stable lubrication system in aqueous conditions[J]. Faraday Discuss., 2012, 156: 403
[18] Banerjee S, Bhattacharya S.Food gels: gelling process and new applications[J]. Crit. Rev. Food Sci. Nutr., 2012, 52: 334
[19] Huang Y C, Yang C Y, Chu H W, et al.Effect of alkali on konjac glucomannan film and its application on wound healing[J]. Cellulose, 2015, 22: 737
[20] Shang X Y, Qin C G, Niu W N, et al.Studies and applications on konjac glucomannan as a new type of functional material[J]. Mater. Rev., 2009, 23(19): 32(尚晓娅, 钦传光, 牛卫宁等. 新型功能材料魔芋葡甘聚糖的研究与应用[J]. 材料导报, 2009, 23(19): 32)
[21] Pang J, Sun Y J, Yang Y H, et al.Studies on hydrogen bonding network structures of konjac glucomannan[J]. Chin. J. Struct. Chem., 2008, 27: 431
[22] Gao S J, Guo J M, Nishinari K.Thermoreversible konjac glucomannan gel crosslinked by borax[J]. Carbohydr. Polym., 2008, 72: 315
[23] Ratcliffe I, Williams P A, English R J, et al.Small strain deformation measurements of konjac glucomannan solutions and the influence of borate cross-linking[J]. Carbohydr. Polym., 2013, 95: 272
[24] Liu P X, Liu Y H, Yang Y, et al.Mechanism of biological liquid superlubricity of Brasenia schreberi mucilage[J]. Langmuir, 2014, 30: 3811
[1] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[5] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[6] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[7] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[8] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[9] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[10] ZHANG Hongliang, ZHAO Guoqing, OU Junfei, Amirfazli Alidad. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation[J]. 材料研究学报, 2022, 36(2): 114-122.
[11] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[12] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[13] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[14] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[15] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
No Suggested Reading articles found!