Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (1): 12-16    DOI: 10.11901/1005.3093.2017.191
ARTICLES Current Issue | Archive | Adv Search |
Surface Properties of Domesic Aramid Fiber III Modified by Oxygen Plasma Treatment
Jing WANG1, Hang REN1, Ping CHEN2(), Chen SHI1, Rong REN1
1 Liaoning Key Laboratory of Advanced Polymer Matrix Composites Manufacturing Technology, Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China
2 State Key Laboratory of Material Surface Modification by Laser, Ion and Electronic Beams, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
Cite this article: 

Jing WANG, Hang REN, Ping CHEN, Chen SHI, Rong REN. Surface Properties of Domesic Aramid Fiber III Modified by Oxygen Plasma Treatment. Chinese Journal of Materials Research, 2018, 32(1): 12-16.

Download:  HTML  PDF(1855KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Oxygen plasma treatment was used to modify the surface of aramid fiber III. The changes of fiber surface before and after oxygen plasma treatment was investigated in this paper. The surface chemical structure, element composition, surface morphology, surface roughness and surface wettability before and after oxygen plasma treatment were analyzed by FTIR, X-ray photoelectron spectroscopy (XPS), scanning electronic microscopy (SEM), atomic force microscopy (AFM) and dynamic contact angle analysis (DCAA), respectively. It was found that oxygen plasma treatment introduced some newly polar groups such as (C-O and O-C=O) to fiber surface, the content of which were 20.1% and 8.1%, respectively. After oxygen plasma treatment, the roughness of fiber surface increased and surface grooves and ups and downs were increased obviously. It was also shown that the fiber surface wettability was improved significantly by oxygen plasma treatment. The total surface free energy increased from 49.9 mJ/m2 to 67.1 mJ/m2.

Key words:  polymer material      plasma      surface      wettability     
Received:  16 April 2017     
ZTFLH:  B324  
Fund: Supported by National Natural Science Foundation of China (No. 51403129), National Defense Key Program Foundational Research Program (No. A35201XXXXX), Liaoning University Student Innovation and Entrepreneurship Project (Nos. S1610305 & S1701011)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.191     OR     https://www.cjmr.org/EN/Y2018/V32/I1/12

Fig.1  Chemical structure of Aramid fiber III
Fig.2  IR spectra of DAFIII before and after plasma treatment
Samples Element content/% O/C N/C
C/% O/% N/%
Untreated 77.1 16.4 6.5 0.21 0.08
Plasma-treated 65.1 20.4 14.5 0.31 0.22
Table 1  Element analysis of DAFIII before and after plasma treatment
Fig.3  C1s spectra of DAFIII before (a) and after (b) plasma treatment
Samples -C-C-
284.4 eV
-C-N-
285.4 eV
-C-O-
286.7 eV
-C=O
287.6 eV
-COO-
290.0 eV
Untreated 60.4 35.1 - 4.5 -
Plasma-treated 29.0 18.9 20.1 23.9 8.1
Table 2  Contents of peak components in C1s for DAFIII with different plasma discharge parameters
Fig.4  SEM photographs of aramid fiber III before (a) and after (b) plasma treatment
Fig.5  AFM photographs of aramid fiber III before (a) and after (b) plasma treatment
Samples Rq/nm Ra/nm
Untreated 46.5 42.3
Plasma-treated 60.9 51.2
Table 3  Surface roughness of DAFIII before and after plasma treatment
Samples Contact angles
(θ) ± s.d. (°)
Surface free
energy (mJ/m2)
θaW θaDIM γp γd γs
Untreated 70.3 (1.2) 30.9 (2.4) 6.1 43.8 49.9
Plasma-treated 28.1 (0.9) 51.2 (0.7) 33.5 33.6 67.1
Table 4  Contact angles with water (W) and diiodomethane (DIM) and surface free energy of aramid fiber III before and after plasma treatment
[1] Du S Y.Advanced composite materials and aerospace[J]. Journal of composite materials, 2007, 4(1): 1(杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 4(1): 1)
[2] Iman T, Abdolhossein F, Fathollah T B.Low-velocity impact response of woven Kevlar/epoxy laminated composites reinforced with multi-walled carbon nanotubes at ambient and low temperatures[J]. Mater. Des., 2014, 53: 152
[3] Hussain S, Yorucu C, Ahmed I.Surface modification of aramid fibres by graphene oxide nano-sheets for multiscale polymer composites[J]. Surf. Coat. Technol., 2014, 258: 458
[4] Liu K J, Yang Q, Zhu L H et al. Introduction of organic fiber[J]. Synthetic fiber, 2013, 42(1): 25(刘克杰, 杨琴, 朱华兰等.有机特种纤维介绍[J]. 合成纤维, 2013, 42(1): 25)
[5] Peng T, Cai R Q, Wang F D, et al.Effects of thermal-oxidative aging on structure and properties of aramid fiber III[J].Journal of Solid Rocket Technology, 2011, 34(2): 247(彭涛, 蔡仁钦, 王凤德等. 热氧老化对芳纶Ⅲ纤维结构与性能的影响[J]. 固体火箭技术, 2011, 34(2): 247)
[6] Ji J Y, Huang Z X, Su Q, et al. Study on O2 plasma surface modification of aramid fiber III [J]. Appl. Mech. Mater., 2012, 155-156: 936
[7] Zhang S H, He G Q, Liang G Z, et al.Comparison of F-12 aramid fiber with domestic armid fiber III on surface feature[J]. Appl. Surf. Sci., 2010, 256(7): 2104
[8] Wang B, Cui H, Zhou Y X, et al.Experimental investigation on properties of new domestic aramid fiber[J]. Journal of Solid Rocket Technology, 2006, 29(5): 377(王斌, 崔红, 周玉玺等. 新型国产芳纶Ⅲ纤维的性能实验研究[J].固体火箭技术, 2006, 29(5): 377)
[9] Xing L X, Liu L, Huang Y D, et al.Enhanced interfacial properties of domestic aramid fiber-12 via high energy gamma ray irradiation[J]. Composites Part B, 2015, 69: 50
[10] Cai R Q, Peng T, Wang F D, et al.Improvement of surface wettability and interfacial adhesion of poly-(p-phenylene terephthalamide) by incorporation of the polyamide benzimidazole segment[J]. Appl. Surf. Sci., 2011, 257: 9562
[11] Ebru B, Kutlay S, Mehmet S, et al.Effects of the atmospheric plasma treatments on surface and mechanical properties of flax fiber and adhesion between fiber-matrix for composite materials[J]. Composites Part B, 2013, 45(1): 565
[12] Peng T, Cai R Q, Chen C F, et al.Surface modification of para-aramid fiber by direct fluorination and its effect on the interface of aramid/epoxy composites[J]. J. Macromo. Sci., Phys., 2012, 51(3): 538
[13] Wang J, Chen P, Li H, et al.Surface modification of Aramid Fibers with Oxygen Plasma Treatment for Improving Interfacial Adhesion with Poly(phthalazinone ether sulfone ketone) Resin[J]. J. Appl. Polym. Sci., 2011, 121(5): 2804
[14] Mohamad W, Ahmed E S, Peter J H.Surface nanostructuring of kevlar fibers by atmospheric pressure plasma-induced graft polymerization for multifunctional protective clothing[J]. J. Polym. Sci., Part B: Polym. Phys., 2012, 50(16): 1165
[15] Song B, Meng L H, Huang Y D, et al.Influence of treatment time on plasma induced vapor phase grafting modification of PBO fiber surface[J]. Appl. Surf. Sci., 2012, 14(258): 5505
[16] Wang H H.Study on Structure and Properties of Aramid Fiber III [D]. Xi'an: Xi'an University ofEngineering, 2015(王红红. 芳纶III纤维的结构与性能研究 [D]. 西安: 西安工程大学, 2015)
[17] Wang J, Chen P, Li H, et al.Surface characteristic of poly (p-phenylene terephthalamide) fibers with oxygen plasma treatment[J]. Surf. Interface Anal., 2008, 40: 1299
[1] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[5] LI Pengyu, LIU Zitong, KANG Shumei, CHEN Shanshan. Effect of Plasma Treatment on Performance of Polybutylene Adipate Coating on Biomedical AZ31 Mg-alloy[J]. 材料研究学报, 2023, 37(4): 271-280.
[6] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[7] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[8] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[10] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[11] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[12] CHENG Hongjie, LIU Huangjuan, JIANG Ting, WANG Fajun, LI Wen. Preparation and Properties of Near-infrared Reflective Superhydrophobic Yellow Coating[J]. 材料研究学报, 2022, 36(9): 687-698.
[13] YANG Qin, WANG Zhen, FANG Chunjuan, WANG Ruodi, GAO Dahang. Preparation and Adsorption Properties of CMC/AA/CB[8]/BET Gel with Controllable Mechanical Properties[J]. 材料研究学报, 2022, 36(8): 628-634.
[14] CAI Yusheng, HAN Hongzhi, REN Dechun, JI Haibin, LEI Jiafeng. Effect of Chemical Etching Process on Surface Roughness of TC4 Ti-alloy Fabricated by Laser Selective Melting[J]. 材料研究学报, 2022, 36(6): 435-442.
[15] ZHAO Chaofeng, ZHENG Xiaoyan, LI Kairui, JIA Shikui, ZHANG Ming, LI Yesheng, WU Ziping. Surface Metallization of Carbon Nanotube Film for Flexible Lithium-ion Batteries with High Output Current[J]. 材料研究学报, 2022, 36(5): 373-380.
No Suggested Reading articles found!