Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (1): 1-11    DOI: 10.11901/1005.3093.2017.146
REVIEW Current Issue | Archive | Adv Search |
Research Progress on Microstructure and Mechanical Properties of Friction Stir Processed Ultrafine-grained Materials
Feifei CHEN1,2, Hongjun HUANG1, Peng XUE2(), Zongyi MA2
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Feifei CHEN, Hongjun HUANG, Peng XUE, Zongyi MA. Research Progress on Microstructure and Mechanical Properties of Friction Stir Processed Ultrafine-grained Materials. Chinese Journal of Materials Research, 2018, 32(1): 1-11.

Download:  HTML  PDF(9240KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ultrafine-grained (UFG) materials have caught much attention due to their significantly enhanced mechanical properties. However, local deformation easily occurred during tensile and fatigue processes of the traditional UFG materials produced by severe plastic deformation methods due to their metastable microstructure, resulting in the greatly reduced mechanical properties. This paper introduced a new method of preparing the UFG materials -friction stir processing (FSP), and the microstructure and mechanical properties of FSP UFG materials were summarized and discussed compared with other UFG materials.

Key words:  metallic materials      friction stir processing      ultrafine-grained material      microstructure      mechanical property     
Received:  22 February 2017     
ZTFLH:  TG172  
Fund: Supported by National Natural Science Foundation of China (Nos. 51301178 & 51331008)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.146     OR     https://www.cjmr.org/EN/Y2018/V32/I1/1

Fig.1  Schematic diagram of FSP process (a) and stirring tool (b)[19]
Fig.2  Optical macrograph of cross section of the single-pass FSP 7075 Al (a) and TEM micrographs showing grain structures in the PZ as indicated by the regions 1-3 in (a) (b)[16]
Fig.3  Typical microstructure of ECAP and FSP ultrafine-grained Cu (a), (b) ECAP Cu; (c), (d) FSP Cu[23, 24]
Fig.4  Distribution of grain boundary misorientation angles (a) FSP Cu-15Al; (b) ECAP Cu-8Al; and TEM images of (c) FSP Cu-15Al; (d) ECAP Cu-8Al[13, 26]
Fig.5  TEM bright-field image (a) and high-resolution image of LPSO phase (b) of FSP Mg-Gd-Y-Zn-Zr alloy, and SEM image (c) and TEM bright-field image of FSP low carbon steel (d)[27, 30]
Fig.6  Microstructure of FSP Al2Cu-Al composites[31]
Fig.7  Stress-strain curves (a, c) and properties comparison (b, d) for FSP Cu and various ultrafine-grained Cu-Al alloys[9, 13]
Fig.8  Engineering stress-strain curves (a) and true stress-strain curves (b) of FSP Al2O3-Al composites and ECAP pure Al[42]
Fig.9  Hardness distribution (a) and tensile curves (b) of large-area FSP Cu specimen[16]
Fig.10  Stress-strain behavior of ultrafine-grained FSP Al-4Mg-1Zr at 175℃ for (a) different strain rates; (b) different processing conditions at an initial strain rate of 1×10-4 s-1[45]
Fig.11  Specimens after superplastic deformation of FSP Mg-Gd-Y-Zn-Zr alloys[28]
Fig.12  Surface morphology (a) and typical dislocation structure (b) of SPD Cu after fatigue, S-N curves (c) of various ultrafine-grained pure Cu samples and typical surface damage morphology (d) of FSP pure Cu after fatigue[24, 52]
[1] Valiev R Z, Islamgaliev R K, Alexandrov I V.Bulk nanostructured materials from severe plastic deformation[J]. Prog. Mater. Sci., 2000, 45(2): 103
[2] Kang Z X, Peng Y H, Lai X M, et al.Research status and application prospect of ultrafine grained and/or nano-crystalline metallic materials processed by severe plastic deformation[J]. Chin. J. Nonf. Met., 2010, 20(4): 587(康志新, 彭勇辉, 赖晓明等. 剧烈塑性变形制备超细晶/纳米晶结构金属材料的研究现状和应用展望[J]. 中国有色金属学报, 2010, 20(4): 587)
[3] Tao N R, Lu K.Dynamic plastic deformation (DPD): A novel technique for synthesizing bulk nanostructured metals[J]. J. Mater. Sci. Technol., 2007, 23(6): 771
[4] Torre F D, Lapovok R, Sandlin J, et al.Microstructures and properties of copper processed by equal channel angular extrusion for 1-16 passes[J]. Acta Mater., 2004, 52(16): 4819
[5] Mughrabi H, H?pper H W.Cyclic deformation and fatigue properties of very fine-grained metals and alloys[J]. Inter. J. Fatigue, 2010, 32(9): 1413
[6] Vinogradov A, Maruyama M, Kaneko Y, et al.Effect of dislocation hardening on monotonic and cyclic strength of severely deformed copper[J]. Phil. Magazine, 2012, 92(6): 666
[7] Goto M, Han S Z, Euh K, et al.Formation of a high-cycle fatigue fracture surface and a crack growth mechanism of ultrafine-grained copper with different stages of microstructural evolution[J]. Acta Mater., 2010, 58(19): 6294
[8] Zhang Z J, An X H, Zhang P, et al.Effects of dislocation slip mode on high-cycle fatigue behaviors of ultrafine-grained Cu-Zn alloy processed by equal-channel angular pressing[J]. Scripta Mater., 2013, 68(6): 389
[9] Xue P, Xiao B L, Ma Z Y.High tensile ductility via enhanced strain hardening in ultrafine-grained Cu[J]. Mater. Sci. Eng. A, 2012, 532: 106
[10] Khan F, Panigrahi S K.Achieving excellent thermal stability and very high activation energy in an ultrafine-grained magnesium silver rare earth alloy prepared by friction stir processing[J]. Mater. Sci. Eng. A, 2016, 675: 338
[11] Xue P, Xiao B L, Ma Z Y.Achieving ultrafine-grained structure in a pure nickel by friction stir processing with additional cooling[J]. Mater. Design, 2014, 56: 848
[12] Chang C I, Du X H, Huang J C.Achieving ultrafine grain size in Mg-Al-Zn alloy by friction stir processing[J]. Scripta Mater., 2007, 57(3): 209
[13] Xue P, Xiao B L, Ma Z Y.Enhanced strength and ductility of friction stir processed Cu-Al alloys with abundant twin boundaries[J].Scripta Mater., 2013, 68(9): 751
[14] Kumar N, Mishra R S, Huskamp C S, et al.Critical grain size for change in deformation behavior in ultrafine grained Al-Mg-Sc alloy[J]. Scripta Mater., 2011, 64(6): 576
[15] Xue P, Ma Z Y, Komizo Y, et al.Achieving ultrafine-grained ferrite structure in friction stir processed weld metal[J]. Mater. Lett., 2016, 162: 161
[16] Su J Q, Nelson T W, Sterling C J.Friction stir processing of large-area bulk UFG aluminum alloys[J]. Scripta Mater., 2005, 52(2): 135
[17] Xue P, Xiao B L, Ma Z Y.Achieving large-area bulk ultrafine grained Cu via submerged multiple-pass friction stir processing[J].J. Mater. Sci. Technol., 2013, 29(12): 1111
[18] Mishra R S, Ma Z Y.Friction stir welding and processing[J]. Mater. Sci. Eng. R, 2005, 50(1-2): 1
[19] Charit I, Mishra R S.Low temperature superplasticity in a friction-stir-processed ultrafine grained Al-Zn-Mg-Sc alloy[J]. Acta Mater., 2005, 53(15): 4211
[20] Ma Z Y.Friction stir processing technology: areview[J]. Metall. Mater. Trans. A, 2008, 39(3): 642
[21] Xue P, Zhang X X, Wu L H, et al.Research progress on friction stir welding and processing[J]. Acta Metall. Sin., 2016, 52(10): 1222(薛鹏, 张星星, 吴利辉等. 搅拌摩擦焊接与加工研究进展, 金属学报, 2016, 52(10): 1222)
[22] Xue P, Wang B B, Chen F F, et al.Microstructure and mechanical properties of friction stir processed Cu with an ideal ultrafine-grained structure[J]. Mater. Charact., 2016, 121: 187
[23] Huang C X, Yang H J, Wu S D, et al. Microstructural characterizations of Cu processed by ECAP from 4 to 24 passes [J]. Mater. Sci. Forum, 2008, 584-586: 333
[24] Xue P, Huang Z Y, Wang B B, et al.Intrinsic high cycle fatigue behavior of ultrafine grained pure Cu with stable structure[J]. Sci. Chin. Mater., 2016, 59(7): 531
[25] Ma Z Y, Liu F C, Mishra R S.Superplastic deformation mechanism of an ultrafine-grained aluminum alloy produced by friction stir processing[J]. ActaMater., 2010, 58(14): 4693
[26] Qu S, An X H, Yang H J, et al.Microstructural evolution and mechanical properties of Cu-Al alloys subjected to equal channel angular pressing[J]. ActaMater., 2009, 57(5): 1586
[27] Yang Q, Xiao B L, Wang D, et al.Formation of long-period stacking ordered phase only within grains in Mg-Gd-Y-Zn-Zr casting by friction stir processing[J]. J. Alloy. Compd., 2013, 581(5): 585
[28] Yang Q, Xiao B L, Zhang Q, et al.Exceptional high-strain-rate superplasticity in Mg-Gd-Y-Zn-Zr alloy with long-period stacking ordered phase[J]. Scripta Mater., 2013, 69(11-12): 801
[29] Wu L H, Xiao B L, Ni D R, et al.Achieving superior superplasticity from lamellar microstructure of a nugget in a friction-stir-welded Ti-6Al-4V joint[J]. Scripta Mater., 2015, 98: 44
[30] Xue P, Xiao B L, Wang W G, et al.Achieving ultrafine dual-phase structure with superior mechanical property in friction stir processed plain low carbon steel[J]. Mater. Sci. Eng. A, 2013, 575: 30
[31] Hsu C J, Kao P W, Ho N J.Ultrafine-grained Al-Al2Cu composite produced in situ by friction stir processing[J]. Scripta Mater., 2005, 53(3): 341
[32] Hsu C J, Chang C Y, Kao P K, et al.Al-Al3Ti nano composites produced in situ by friction stir processing[J]. Acta Mater., 2006, 54(19): 5241
[33] Morisada Y, Fujii H, Nagaoka T, et al.Fullerene/A5083 composites fabricated by material flow during friction stir processing[J].Compos. A, 2007, 38(10): 2097
[34] Liu Z Y, Xiao B L, Wang W G, et al.Developing high-performance aluminum matrix composites with directionally aligned carbon nanotubes by combining friction stir processing and subsequent rolling[J]. Carbon, 2013, 62(5): 35
[35] Liu Z Y, Xiao B L, Wang W G, et al.Tensile strength and electrical conductivity of carbon nanotube reinforced aluminun matrix composites fabricated by powder metallurgy combined with friction stir processing[J]. J. Mater. Sci. Technol., 2014, 30(7): 649
[36] Su J Q, Nelson T W, Sterling C J.Fabrication of bulk nanostructured materials by friction stir processing [A]. Symposium on Processing and Properties of Structural Materials, 2003 TMS Fall Meeting[C]. Chigago, 2003
[37] Wang B B, Chen F F, Liu F, et al.Enhanced mechanical properties of friction stir welded 5083Al-H19 joints with additional water cooling[J]. J. Mater. Sci. Technol., 2017, 33(9): 1009
[38] Xue P, Xiao B L, Zhang Q, et al.Achieving friction stir welded pure copper joints with nearly equal strength to the parent metal via additional rapid cooling[J]. Scripta Mater., 2011, 64(11): 1051
[39] Wang Y P, Fu R D, Zhou X Y, et al.Enhanced mechanical properties of pure copper with a mixture microstructure of nanocrystalline and ultrafine grains[J]. Mater. Lett.,2016, 185: 546
[40] Wang Y M, Chen M W, Zhou F H, et al.High tensile ductility in a nanostructured metal[J]. Nature, 2002, 419(6910): 912
[41] Xue P, Xiao B L, Ma Z Y.Microstructure and mechanical properties of friction stir processesd ultrafine-grained and nanostructured Cu-Al alloys[J]. Acta Metall. Sin., 2014, 50(2): 245(薛鹏, 肖伯律, 马宗义. 搅拌摩擦焊制备超细晶纳米晶铜铝合金的组织和性能特点[J]. 金属学报,2014, 50(2): 245)
[42] Hu C M, Lai C M, Du X H, et al.Enhanced tensile plasticity in ultrafine-grained metallic composite fabricated by friction stir process[J]. Scripta Mater. 2008, 59(11): 1163
[43] Wen J B, Yang Y L, Yang Y S, et al.Superplastic Application Technology [M]. Beijing: China Machine Press, 2005(文九巴, 杨蕴林, 杨永顺等. 超塑性应用技术 [M]. 北京: 机械工业出版社, 2005)
[44] Khan F, Panigrahi S K.Achieving excellent thermal stability and very high activation energy in an ultrafine-grained magnesium silver rare earth alloy prepared by friction stir processing[J]. Mater. Sci. Eng. A, 2016, 675: 338
[45] Ma Z Y, Mishra R S.Development of ultrafine-grained microstructure and low temperature (0.48 Tm) superplasticity in friction stir processed Al-Mg-Zr[J]. Scripta Mater., 2005, 53(1): 75
[46] Liu F C, Ma Z Y.Contribution of grain boundary sliding in low-temperature superplasticity of ultrafined grained aluminum alloys[J]. Scripta Mater., 2010, 62(3): 125
[47] Gao X, Zhang Z, Wang K S, et al.Recent progress in research on Superplasticity of magnesium alloy by friction stir processing[J].Mater. Rev., 2014, 28(3): 138(高雪, 张郑, 王快社等. 搅拌摩擦加工镁合金超塑性最新研究进展[J]. 材料导报, 2014, 28(3): 138)
[48] Liu F C, Ma Z Y.Achieving exceptionally high superplasticity at high strain rates in a micrograined Al-Mg-Sc alloy produced by friction stir processing[J]. Scripta Mater., 2008, 59(8): 882
[49] Liu F C, Ma Z Y.Low-temperature superplasticity of friction stir processed Al-Zn-Mg-Cu alloy[J]. Scripta Mater., 2008, 58(8): 667
[50] Liu F C, Ma Z Y, Chen L Q.Low-temperature superplasticity of Al-Mg-Sc alloy produced by friction stir processing[J]. Scripta Mater., 2009, 60(11): 968
[51] Wu L H, Xue P, Xiao B L, et al.Achieving superior low-temperature superplasticity for lamellar microstructure in nugget of a friction stir welded Ti-6Al-4V joint[J]. Scripta Mater., 2016, 122: 26
[52] An X H, Wu S D, Wang Z G, et al.Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu-Al alloys[J]. Acta Mater., 2014, 74: 200
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!