Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (11): 839-846    DOI: 10.11901/1005.3093.2017.274
Orginal Article Current Issue | Archive | Adv Search |
Effect of Fly Ash Content on Hydration Kinetics of Magnesium Potassium Phosphate Cement
Sixie ZHAO, Hua YAN, Hongtao WANG(), Yuntao LI, Fengle DAI
Department of Chemical and Materials Engineering, Logistical Engineering University, Chongqing 401311, China
Cite this article: 

Sixie ZHAO, Hua YAN, Hongtao WANG, Yuntao LI, Fengle DAI. Effect of Fly Ash Content on Hydration Kinetics of Magnesium Potassium Phosphate Cement. Chinese Journal of Materials Research, 2017, 31(11): 839-846.

Download:  HTML  PDF(1226KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The rate and quantity of heat release during hydration of magnesium potassium phosphate cement (MKPC) containing 0、5%、10%、15%、20% and 25% fly ash respectively were measured at 20℃ via isothermal calorimetry. The effect of fly ash content on the hydration process of MKPC was investigated in terms of the relevant kinetics parameters, as well as the final heat release Q、hydration resistance N and reaction constant K were calculated by the Knudsen and Kondo hydration kinetics formula. The results show that Knudsen and Kondo hydration kinetics formula presented a good applicability for calculation of the final heat release and kinetics parameters of MKPC, with very high relevance fitting. Hydration process of MKPC can be divided into 6 stages, and hydration reaction started from the second stage. At the fourth stage of hydration, MKPC changed from nucleation and crystal growth process to diffusion process directly. The content of reaction components of MgO and KH2PO4 decrease with the increasing fly ash content varied from 0~15%,resulting in decrease of hydration heat of MKPC. Fly ash participanted hydration as physical fitter and showed little influence on the hydration process of of MKPC. When the incorporation amount of fly ash content varied from 15% to 25%, an increase of hydration heat was matched and both content N and K for each hydration stage of MKPC presented huge variation due to the decrease of borax content and the pozzolanic effect of fly ash.

Key words:  inorganic non-metallic materials      hydration process      hydration kinetics      fly ash      magnesium potassium phosphate cement      pozzolanic effect     
Received:  24 April 2017     
Fund: Supported by National Natural Science Foundation of China (No. 51272283)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.274     OR     https://www.cjmr.org/EN/Y2017/V31/I11/839

Oxide MgO SiO2 CaO Fe2O3 Al2O3 SO3 P2O5 TiO2 Other
Content 88.18 7.23 2.20 0.68 1.31 0.08 0.11 0.13 0.08
Table 1  Chemical compositon of the magnesia (%, mass fraction)
Oxide SiO2 Fe2O3 AL2O3 CaO MgO K2O Na2O SO3 Other
Content 44.02 12.15 27.25 1.41 1.77 1.06 0.81 1.09 10.44
Table 2  Chemical compositon of the fly ash (%, mass fraction)
Fig.1  Characteristic hydration heat release curve of MKPC (a) 0~2 h; (b) 0~8 h
Fig.2  Effect of fly ash replacement on the hydration heat of MKPC (a) heat evolution curves; (b) cumulative heat curves
Fig.3  Curves fitting between 1/Q and 1/(t-t0)
Content 0 5% 10% 15% 25% 30%
Q/J·g-1 148.81 136.63 134.66 100.07 109.32 125.85
t50/h 1.83 1.72 2.14 2.09 1.92 2.06
R 0.98902 0.98730 0.98411 0.96455 0.97500 0.98409
Table 3  Final heat Q, half-time t50 and correlation coefficient R at different fly ash replacement
Fig.4  Fitting diagram of MPC at stage II-stage VI (a)stage II; (b) stage III; (c) stage IV; (d) stage V; (e) stage VI
Fig.5  Kinetic factors of hydration process of MKPC with different fly ash replacement (a) Kinetic factors K; (b) Kinetic factors N
[1] Wang H T, Qian J S, Wang J G.Review of magnesia-phosphate cement[J]. Mater. Rev., 2005, 19(12): 46(汪宏涛, 钱觉时, 王建国. 磷酸镁水泥的研究进展[J]. 材料导报, 2005, 19(12): 46)
[2] Yang Q B, Zhu B R, Wu X L.Characteristics and durability test of magnesium phosphate cement-based material for rapid repair of concrete[J]. Mater. Struct., 2000, 33: 229
[3] Li J S, Zhang W B, Cao Y.Laboratory evaluation of magnesium phosphate cement paste and mortar for rapid repair of cement concrete pavement[J]. Construct. Build. Mater., 2014, 58: 122
[4] You C, Qian J S, Qin J H, et al.Effect of early hydration temperature on hydration product and strength development of magnesium phosphate cement (MPC)[J]. Cem. Concr. Res., 2015, 78: 179
[5] Ding Z, Li Z J.High-early-strength magnesium phosphate cement with fly ash[J]. Mater. J., 2005, 102: 375
[6] Buj I, Torras J, Rovira M, et al.Leaching behaviour of magnesium phosphate cements containing high quantities of heavy metals[J]. J. Hazard. Mater., 2010, 175: 789
[7] Zhang S Y, Shi H S.Performances and applications of magnesium phosphate cement-based composite modified by fly ash[J]. Fly Ash Compreh. Utiliz., 2009, (1): 54(张思宇, 施惠生. 粉煤灰改性磷酸镁水泥基材料的性能与应用[J]. 粉煤灰综合利用, 2009, (1): 54)
[8] Lu Y.Performance of magnesium phosphate cement modified with fly ash under low temperatures[J]. Bull. Chin. Ceram. Soc., 2015, 34: 3596(路毅. 低温下粉煤灰改性磷酸镁水泥性能研究[J]. 硅酸盐通报, 2015, 34: 3596)
[9] Wang H T.Preparation of new low-cost phosphate cement with fly ash[J]. Coal Ash, 2010, (5): 38(汪宏涛. 利用粉煤灰制备新型低成本磷酸盐水泥[J]. 粉煤灰, 2010, (5): 38)
[10] Li G X, Tong W L, Zhang G, et al.Influence of fly ash and slag on the properties of magnesium phosphate cement[J]. Bull. Chin. Ceram. Soc., 2016, 35: 352(李国新, 仝万亮, 张歌等. 粉煤灰和矿粉对磷酸镁水泥性能的影响[J]. 硅酸盐通报, 2016, 35: 352)
[11] Huang Y X.Research of magnesium phosphate cement modified by fly ash and repair performance [D]. Chongqing: Chongqing University, 2011(黄义雄. 磷酸镁水泥的粉煤灰改性与修补性能研究 [D]. 重庆: 重庆大学, 2011)
[12] Lin W, Sun W, Li Z J.Study on the effects of fly ash in magnesium phosphate cement[J]. J. Build. Mater., 2010, 13: 716(林玮, 孙伟, 李宗津. 磷酸镁水泥中的粉煤灰效应研究[J]. 建筑材料学报, 2010, 13: 716)
[13] Yan P Y, Zheng F.Kinetics model for the hydration mechanism of cementitious materials[J]. J. Chin. Ceram. Soc., 2006, 34: 555(阎培渝, 郑峰. 水泥基材料的水化动力学模型[J]. 硅酸盐学报, 2006, 34: 555)
[14] Fu C X, Shen W X, Yao T Y, et al.Physical Chemistry [M]. 4th ed. Beijing: Higher Education Press, 2003(傅彩霞, 沈文霞, 姚天扬. 物理化学[M]. 第4版. 北京: 高等教育出版社, 2003)
[15] Rao M J, Liu S H, Fang K H, et al.Effect of limestone powder on hydration kinetics of cement-based composites[J]. J. Build. Mater., 2009, 12: 734(饶美娟, 刘数华, 方坤河等. 石灰石粉对水泥基材料水化动力学的影响[J]. 建筑材料学报, 2009, 12: 734)
[16] Wang A Q, Yang N R, Zhong B Q, et al.Hydration kinetic of fly ash cement[J]. J. Chin. Ceram. Soc., 1997, 25: 123(王爱勤, 杨南如, 钟白茜等. 粉煤灰水泥的水化动力学[J]. 硅酸盐学报, 1997, 25: 123)
[17] Merzouki T, Bouasker M, El Houda Khalifa N, et al. Contribution to the modeling of hydration and chemical shrinkage of slag-blended cement at early age[J]. Construct. Build. Mater., 2013, 44: 368
[18] Wu X Q.Kinetic study on hydration of blast furnace slag cement[J]. J. Chin. Ceram. Soc., 1988, 16: 423(吴学权. 矿渣水泥水化动力学研究[J]. 硅酸盐学报, 1988, 16: 423)
[19] Han F H, Wang D M, Yan P Y.Hydration kinetics of composite binder containing different content of slag or fly ash[J]. J. Chin. Ceram. Soc., 2014, 42: 613(韩方晖, 王栋民, 阎培渝. 含不同掺量矿渣或粉煤灰的复合胶凝材料的水化动力学[J]. 硅酸盐学报, 2014, 42: 613)
[20] Yan P Y.Mechanism of fly ash’s effects during hydration process of composite binder[J]. J. Chin. Ceram. Soc., 2007, 35(S1): 167(阎培渝. 粉煤灰在复合胶凝材料水化过程中的作用机理[J]. 硅酸盐学报, 2007, 35(S1): 167)
[21] Krstulović R, Dabić P.A conceptual model of the cement hydration process[J]. Cem. Concr. Res., 2000, 30: 693
[22] Knudsen T.On particle size distribution in cement hydration [A]. Proceedings of 7th International Congress on the Chemistry of Cement[C]. Paris, 1980
[23] Kondo R, Ueda S.Kinetics of hydration of cement [A]. Proceedings of 5th International Conference on the Chemistry of Cement, SESS II-4[C]. Tokyo, 1968
[24] Wang H T, Ding J H, Zhang S H, et al.Study on the influent factors of magnesium phosphate cement hydration heat[J]. J. Funct. Mater., 2015, 46: 22098(汪宏涛, 丁建华, 张时豪等. 磷酸镁水泥水化热的影响因素研究[J]. 功能材料, 2015, 46: 22098)
[25] Le Rouzic M, Chaussadent T, Platret C, et al.Mechanisms of k-struvite formation in magnesium phosphate cements[J]. Cem. Concr. Res., 2017, 91: 117
[26] Chang Y, Shi C J, Yang N, et al.Effect of fineness of magnesium oxide on properties of magnesium potassium phosphate cement[J]. J. Chin. Ceram. Soc., 2013, 41: 492(常远, 史才军, 杨楠等. 不同细度MgO 对磷酸钾镁水泥性能的影响[J]. 硅酸盐学报, 2013, 41: 492)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!