Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (9): 714-720    DOI: 10.11901/1005.3093.2016.529
ARTICLES Current Issue | Archive | Adv Search |
NiO Electrode Synthesized via Sol-gel Method and Super-Capacitive Performance
Ning MI1(), Lei ZHAO1, Maocheng LIU2
1 School of Mechanical Engineering, Longdong University, Qingyang 745000, China
2 State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050, China
Cite this article: 

Ning MI, Lei ZHAO, Maocheng LIU. NiO Electrode Synthesized via Sol-gel Method and Super-Capacitive Performance. Chinese Journal of Materials Research, 2017, 31(9): 714-720.

Download:  HTML  PDF(964KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

NiO with maximum specific capacitance of 744 Fg-1 was successfully synthesized by sol-gel method and then simple calcination. The microstructure and aggregation morphology of the as-prepared NiO electrode were characterized by powder X-ray diffract ometer (XRD) and scanning electron microscopy (SEM), transmission electron microscopy (TEM) and BET. An asymmetric supercapacitor has been constructed with nickel oxide as the positive electrode and activated carbon as the negative electrode, respectively. The performance of the asymmetric supercapacitor was investigated in 2 mol/L KOH aqueous electrolyte using cyclic voltammetry (CV) and galvanostatic charge/discharge test. The asymmetric supercapacitor exhibited excellent energy density, power density and cycle stability, especially good electrochemical stability, i.e. even after consecutive 1,000 cycles the capacitance of the capacitor still kept at 84.3% of the initial value.

Key words:  inorganic non-metallic materials      asymmetric supercapacitor      nickel oxide      sol-gel      supercapatitor     
Received:  27 July 2016     
ZTFLH:  TB321  
  TM911  
Fund: Supported by National Natural Science Foundation of China (No.21403099) and Youth Science and Technology Innovation Project of Longdong University (No.XYZK1608)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.529     OR     https://www.cjmr.org/EN/Y2017/V31/I9/714

Fig.1  XRD patterns of NiO electrode material
Fig.2  SEM images of NiO electrode material
Fig.3  TEM image of NiO electrode material
Fig.4  N2 adsorption/desorption isotherms of NiO electrode material; the inset shows pore size distribution of the sample
Fig.5  CV curves of AC (a) and NiO (b) electrodes at a scan rate of 5 mVs-1
Fig.6  Charge/discharge curves of the NiO electrode in the potential window 0 to 0.4 V (a) and AC electrode in the potential window of -1 to 0 V (b)
Fig.7  Electrochemical curves of asymmetric supercapacitor in 2 mol/L KOH solution (a) CV curves at different scan rates and (b) charge/discharge behavior at different current densities
Fig.8  Curves of the variational specific capacitance by different current densities for asymmetric supercapacitor (a) and AC-based EDLC capacitor (b)
Fig.9  Ragone plot of asymmetric supercapacitor (a) and AC-based EDLC capacitor (b)
Fig.10  Cycle life of the asymmetric supercapacitor at a current density of 10 mAcm-2,the inset is charge/discharge curves of the asymmetric supercapacitor
[1] Winter M, Brodd R J.What are batteries, fuel cells, and supercapacitors?[J]. Chem. Rev., 2004, 104: 4245
[2] Lunkenheimer P, Loidl A, Ottermann C R, et al.Correlated barrier hopping in NiO films[J]. Phys. Rev., 1991, 44B: 5927
[3] Kim T, Mo Y H, Nahm K S, et al.Carbon nanotubes (CNTs) as a buffer layer in silicon/CNTs composite electrodes for lithium secondary batteries[J]. J. Power Sources, 2006, 162: 1275
[4] Leitner K W, Winter M, Besenhard J O.Composite supercapacitor electrodes[J]. J. Solid State Electrochem., 2003, 8: 15
[5] Lewandowski A, Galinski M.Practical and theoretical limits for electrochemical double-layer capacitors[J]. J. Power Sources, 2007, 173: 822
[6] Brousse T, Taberna P L, Crosnier O, et al.Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor[J]. J. Power Sources, 2007, 173: 633
[7] Duffy N W, Baldsing W, Pandolfo A G.The nickel-carbon asymmetric supercapacitor—performance, energy density and electrode mass ratios[J]. Electrochim. Acta, 2008, 54: 535
[8] Burke A.R&D considerations for the performance and application of electrochemical capacitors[J]. Electrochim. Acta, 2007, 53: 1083
[9] Qu Q T, Shi Y, Tian S, et al.A new cheap asymmetric aqueous supercapacitor: Activated carbon//NaMnO2[J]. J. Power Sources, 2009, 194: 1222
[10] Yoon J H, Bang H J, Prakash J, et al.Comparative study of Li[Ni1/3-Co1/3Mn1/3]O2 cathode material synthesized via different synthetic routes for asymmetric electrochemical capacitor applications[J]. Mater. Chem. Phys., 2008, 110: 222
[11] Algharaibeh Z, Liu X R, Pickup P G.An asymmetric anthraquinone-modified carbon/ruthenium oxide supercapacitor[J]. J. Power Sources, 2009, 187: 640
[12] An K H, Kim W S, Park Y S, et al.Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes[J]. Adv. Funct. Mater., 2001, 11: 387
[13] Wang D W, Li F, Liu M, et al.3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J]. Angew. Chem. Int. Ed., 2007, 47: 373
[14] Cao L, Xu F, Liang Y Y, et al.Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density[J]. Adv. Mater., 2004, 16: 1853
[15] Ke Y F, Tsai D S, Huang Y S.Electrochemical capacitors of RuO2 nanophase grown on LiNbO3(100) and sapphire(0001) substrates[J]. J. Mater. Chem., 2005, 15: 2122
[16] Kong L B, Zhang J, An J J, et al.MWNTs/PANI composite materials prepared by in-situ chemical oxidative polymerization for supercapacitor electrode[J]. J. Mater. Sci., 2008, 43: 3664
[17] Fu H Y, Sun X Y, Gao X D, et al.Synthesis and characterization of benzothiazole derivatives for blue electroluminescent devices[J]. Synth. Met., 2009, 159: 254
[18] Itagaki M, Suzuki S, Shitanda I, et al.Impedance analysis on electric double layer capacitor with transmission line model[J]. J. Power Sources, 2007, 164: 415
[19] Sugimoto W, Iwata H, Yasunaga Y, et al.Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage[J]. Angew. Chem. Int. Ed., 2003, 42: 4092
[20] Gupta V, Gupta S, Miura N.Electrochemically synthesized nanocrystalline spinel thin film for high performance supercapacitor[J]. J. Power Sources, 2010, 195: 3757
[21] Srinivasan V, Weidner J W.Capacitance studies of cobalt oxide films formed via electrochemical precipitation[J]. J. Power Sources, 2002, 108: 15
[22] Zheng J P, Cygan P J, Jow T R.Hydrous ruthenium oxide as an electrode material for electrochemical capacitors[J]. J. Electrochem. Soc., 1995, 142: 2699
[23] Park B O, Lokhande C D, Park H S, et al.Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes—effect of film thickness[J]. J. Power Sources, 2004, 134: 148
[24] Srinivasan V, Weidner J W.An electrochemical route for making porous nickel oxide electrochemical capacitors[J]. J. Electrochem. Soc., 1997, 144: L210
[25] Lang J W, Kong L B, Wu W J, et al.Synthesis, characterization, and electrochemical properties of Ni(OH)2/ultra-stable Y zeolite composite[J]. J. Mater. Sci., 2009, 44: 4466
[26] Palmas S, Ferrara F, Vacca A, et al.Behavior of cobalt oxide electrodes during oxidative processes in alkaline medium[J]. Electrochim. Acta, 2007, 53: 400
[27] Kong L B, Lang J W, Liu M, et al.Facile approach to prepare loose-packed cobalt hydroxide nano-flakes materials for electrochemical capacitors[J]. J. Power Sources, 2009, 194: 1194
[28] Toupin M, Brousse T, Bélanger D.Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor[J]. Chem. Mater., 2004, 16: 3184
[29] Wang X F, You Z, Ruan D B.A hybrid metal oxide supercapacitor in aqueous KOH electrolyte[J]. Chin. J. Chem., 2006, 24: 1126
[30] Liu K C, Anderson M A.Porous nickel oxide/nickel films for electrochemical capacitors[J]. J. Electrochem. Soc., 1996, 143: 124
[31] Bai Y S.Study on the preparation method of electrode materials in electrochemical supercapacitors [D]. Nanjing: Nanjing Tech University, 2005(柏云杉. 超级电容器电极材料的制备方法研究 [D]. 南京: 南京工业大学, 2005)
[32] Guo H.The performance of the oxidation of nickel and its compounds supercapacitor [D]. Harbin: Harbin Engineering University, 2012(郭慧. 氧化镍及其复合物超级电容器的研究 [D]. 哈尔滨: 哈尔滨工程大学, 2012)
[33] Cao L, Lu M, Li H L.Preparation of mesoporous nanocrystalline Co3O4 and its applicability of porosity to the formation of electrochemical capacitance[J]. J. Electrochem. Soc., 2005, 152: A871
[34] Wang X F, Ruan D B, You Z.Application of spherical Ni(OH)2/CNTs composite electrode in asymmetric supercapacitor[J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 1129
[35] Wei T Y, Chen C H, Chang K H, et al.Cobalt oxide aerogels of ideal Supercapacitive properties prepared with an epoxide synthetic route[J]. Chem. Mater., 2009, 21: 3228
[36] Li Y M, Li W Y, Chou S L, et al.Synthesis, characterization and electrochemical properties of aluminum-substituted alpha-Ni(OH)2 hollow spheres[J]. J. Alloys Compd., 2008, 456: 339
[37] K?tz R, Carlen M.Principles and applications of electrochemical capacitors[J]. Electrochim. Acta, 2000, 45: 2483
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!