|
|
NiO Electrode Synthesized via Sol-gel Method and Super-Capacitive Performance |
Ning MI1( ), Lei ZHAO1, Maocheng LIU2 |
1 School of Mechanical Engineering, Longdong University, Qingyang 745000, China 2 State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050, China |
|
Cite this article:
Ning MI, Lei ZHAO, Maocheng LIU. NiO Electrode Synthesized via Sol-gel Method and Super-Capacitive Performance. Chinese Journal of Materials Research, 2017, 31(9): 714-720.
|
Abstract NiO with maximum specific capacitance of 744 Fg-1 was successfully synthesized by sol-gel method and then simple calcination. The microstructure and aggregation morphology of the as-prepared NiO electrode were characterized by powder X-ray diffract ometer (XRD) and scanning electron microscopy (SEM), transmission electron microscopy (TEM) and BET. An asymmetric supercapacitor has been constructed with nickel oxide as the positive electrode and activated carbon as the negative electrode, respectively. The performance of the asymmetric supercapacitor was investigated in 2 mol/L KOH aqueous electrolyte using cyclic voltammetry (CV) and galvanostatic charge/discharge test. The asymmetric supercapacitor exhibited excellent energy density, power density and cycle stability, especially good electrochemical stability, i.e. even after consecutive 1,000 cycles the capacitance of the capacitor still kept at 84.3% of the initial value.
|
Received: 27 July 2016
|
|
Fund: Supported by National Natural Science Foundation of China (No.21403099) and Youth Science and Technology Innovation Project of Longdong University (No.XYZK1608) |
[1] | Winter M, Brodd R J.What are batteries, fuel cells, and supercapacitors?[J]. Chem. Rev., 2004, 104: 4245 | [2] | Lunkenheimer P, Loidl A, Ottermann C R, et al.Correlated barrier hopping in NiO films[J]. Phys. Rev., 1991, 44B: 5927 | [3] | Kim T, Mo Y H, Nahm K S, et al.Carbon nanotubes (CNTs) as a buffer layer in silicon/CNTs composite electrodes for lithium secondary batteries[J]. J. Power Sources, 2006, 162: 1275 | [4] | Leitner K W, Winter M, Besenhard J O.Composite supercapacitor electrodes[J]. J. Solid State Electrochem., 2003, 8: 15 | [5] | Lewandowski A, Galinski M.Practical and theoretical limits for electrochemical double-layer capacitors[J]. J. Power Sources, 2007, 173: 822 | [6] | Brousse T, Taberna P L, Crosnier O, et al.Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor[J]. J. Power Sources, 2007, 173: 633 | [7] | Duffy N W, Baldsing W, Pandolfo A G.The nickel-carbon asymmetric supercapacitor—performance, energy density and electrode mass ratios[J]. Electrochim. Acta, 2008, 54: 535 | [8] | Burke A.R&D considerations for the performance and application of electrochemical capacitors[J]. Electrochim. Acta, 2007, 53: 1083 | [9] | Qu Q T, Shi Y, Tian S, et al.A new cheap asymmetric aqueous supercapacitor: Activated carbon//NaMnO2[J]. J. Power Sources, 2009, 194: 1222 | [10] | Yoon J H, Bang H J, Prakash J, et al.Comparative study of Li[Ni1/3-Co1/3Mn1/3]O2 cathode material synthesized via different synthetic routes for asymmetric electrochemical capacitor applications[J]. Mater. Chem. Phys., 2008, 110: 222 | [11] | Algharaibeh Z, Liu X R, Pickup P G.An asymmetric anthraquinone-modified carbon/ruthenium oxide supercapacitor[J]. J. Power Sources, 2009, 187: 640 | [12] | An K H, Kim W S, Park Y S, et al.Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes[J]. Adv. Funct. Mater., 2001, 11: 387 | [13] | Wang D W, Li F, Liu M, et al.3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J]. Angew. Chem. Int. Ed., 2007, 47: 373 | [14] | Cao L, Xu F, Liang Y Y, et al.Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density[J]. Adv. Mater., 2004, 16: 1853 | [15] | Ke Y F, Tsai D S, Huang Y S.Electrochemical capacitors of RuO2 nanophase grown on LiNbO3(100) and sapphire(0001) substrates[J]. J. Mater. Chem., 2005, 15: 2122 | [16] | Kong L B, Zhang J, An J J, et al.MWNTs/PANI composite materials prepared by in-situ chemical oxidative polymerization for supercapacitor electrode[J]. J. Mater. Sci., 2008, 43: 3664 | [17] | Fu H Y, Sun X Y, Gao X D, et al.Synthesis and characterization of benzothiazole derivatives for blue electroluminescent devices[J]. Synth. Met., 2009, 159: 254 | [18] | Itagaki M, Suzuki S, Shitanda I, et al.Impedance analysis on electric double layer capacitor with transmission line model[J]. J. Power Sources, 2007, 164: 415 | [19] | Sugimoto W, Iwata H, Yasunaga Y, et al.Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage[J]. Angew. Chem. Int. Ed., 2003, 42: 4092 | [20] | Gupta V, Gupta S, Miura N.Electrochemically synthesized nanocrystalline spinel thin film for high performance supercapacitor[J]. J. Power Sources, 2010, 195: 3757 | [21] | Srinivasan V, Weidner J W.Capacitance studies of cobalt oxide films formed via electrochemical precipitation[J]. J. Power Sources, 2002, 108: 15 | [22] | Zheng J P, Cygan P J, Jow T R.Hydrous ruthenium oxide as an electrode material for electrochemical capacitors[J]. J. Electrochem. Soc., 1995, 142: 2699 | [23] | Park B O, Lokhande C D, Park H S, et al.Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes—effect of film thickness[J]. J. Power Sources, 2004, 134: 148 | [24] | Srinivasan V, Weidner J W.An electrochemical route for making porous nickel oxide electrochemical capacitors[J]. J. Electrochem. Soc., 1997, 144: L210 | [25] | Lang J W, Kong L B, Wu W J, et al.Synthesis, characterization, and electrochemical properties of Ni(OH)2/ultra-stable Y zeolite composite[J]. J. Mater. Sci., 2009, 44: 4466 | [26] | Palmas S, Ferrara F, Vacca A, et al.Behavior of cobalt oxide electrodes during oxidative processes in alkaline medium[J]. Electrochim. Acta, 2007, 53: 400 | [27] | Kong L B, Lang J W, Liu M, et al.Facile approach to prepare loose-packed cobalt hydroxide nano-flakes materials for electrochemical capacitors[J]. J. Power Sources, 2009, 194: 1194 | [28] | Toupin M, Brousse T, Bélanger D.Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor[J]. Chem. Mater., 2004, 16: 3184 | [29] | Wang X F, You Z, Ruan D B.A hybrid metal oxide supercapacitor in aqueous KOH electrolyte[J]. Chin. J. Chem., 2006, 24: 1126 | [30] | Liu K C, Anderson M A.Porous nickel oxide/nickel films for electrochemical capacitors[J]. J. Electrochem. Soc., 1996, 143: 124 | [31] | Bai Y S.Study on the preparation method of electrode materials in electrochemical supercapacitors [D]. Nanjing: Nanjing Tech University, 2005(柏云杉. 超级电容器电极材料的制备方法研究 [D]. 南京: 南京工业大学, 2005) | [32] | Guo H.The performance of the oxidation of nickel and its compounds supercapacitor [D]. Harbin: Harbin Engineering University, 2012(郭慧. 氧化镍及其复合物超级电容器的研究 [D]. 哈尔滨: 哈尔滨工程大学, 2012) | [33] | Cao L, Lu M, Li H L.Preparation of mesoporous nanocrystalline Co3O4 and its applicability of porosity to the formation of electrochemical capacitance[J]. J. Electrochem. Soc., 2005, 152: A871 | [34] | Wang X F, Ruan D B, You Z.Application of spherical Ni(OH)2/CNTs composite electrode in asymmetric supercapacitor[J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 1129 | [35] | Wei T Y, Chen C H, Chang K H, et al.Cobalt oxide aerogels of ideal Supercapacitive properties prepared with an epoxide synthetic route[J]. Chem. Mater., 2009, 21: 3228 | [36] | Li Y M, Li W Y, Chou S L, et al.Synthesis, characterization and electrochemical properties of aluminum-substituted alpha-Ni(OH)2 hollow spheres[J]. J. Alloys Compd., 2008, 456: 339 | [37] | K?tz R, Carlen M.Principles and applications of electrochemical capacitors[J]. Electrochim. Acta, 2000, 45: 2483 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|