Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (9): 703-713    DOI: 10.11901/1005.3093.2016.577
ARTICLES Current Issue | Archive | Adv Search |
Numerical Analysis in Mesoscopic Scale and Experimental Verification for Sodium Expansion Induced Stress of Cathode Carbon Blocks
Qingsheng LIU(), Shaojun ZENG, Dancheng ZHANG
Falculty of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
Cite this article: 

Qingsheng LIU, Shaojun ZENG, Dancheng ZHANG. Numerical Analysis in Mesoscopic Scale and Experimental Verification for Sodium Expansion Induced Stress of Cathode Carbon Blocks. Chinese Journal of Materials Research, 2017, 31(9): 703-713.

Download:  HTML  PDF(3326KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The cathode carbon block was regarded as a two-phase composite material composed of aggregates and binder in mesoscopic scale, for description of which, a two-dimensional random aggregate model was established by Monte Carlo method. Then the numerical simulation of sodium expansion induced stress of aggregate model was established by the thermal analysis module of ANSYS finite element software in consideration of different shapes, gradations and contents of the aggregate. The results show that the nonuniformity of the meso-structure in the cathode carbon block causes the nonuniform distribution of the stress induced by the sodium expansion. Particularly, the presence of the tensile stress can lead to the damage of the cathode carbon block. The sodium expansion of the carbon blocks with the carbon aggregate within the gradation of 0.003-0.015 m is the lowest, while those within the gradation of 0.003-0.006 m is the highest. The sodium expansion of the carbon block with 80% carbon aggregate is the lowest, while that with 60% carbon aggregate is the highest. The numerical simulation results are in accordance with the experimental results,which means that this model can reasonably and effectively describe the sodium expansion and stress distribution of the carbon block. Thus it can be used as an effective auxiliary way to study phenomena related with the sodium expansion induced stress.

Key words:  foundation discipline in materials science      model of sodium expansion stress      numerical stress      numerical simulation      cathode carbon block      meso-structure     
Received:  30 September 2016     
ZTFLH:  TF821  
Fund: Supported by National Natural Science Foundation of China (Nos.51264011 & 51564019)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.577     OR     https://www.cjmr.org/EN/Y2017/V31/I9/703

Number Shape Filling ratio Diameter of grading
1 circle 60% 0.003~0.009 m
2 circle 70% 0.003~0.006 m
3 circle 70% 0.003~0.009 m
4 circle 70% 0.003~0.015 m
5 circle 80% 0.003~0.009 m
6 ellipse 70% 0.003~0.009 m
7 polygon 70% 0.003~0.009 m
Table1  Control parameters of different aggregate model
Fig.1  Finite element meshes of model 2 (a) solid pattern, (b) Aggregate unit, (c) Binder unit
Fig.2  Constraint of model
Aggregate Binder
Density (kg/m3) 1940 1200
Modulus of elasticity (GPa) 9 6
Poisson's ratio 0.32 0.28
Diffusion coefficient of
sodium (mm2/s)
8.9×10-3 9.7×10-2
Table 2  Material parameters of cathode carbon block
Sodium concentration /%, mass fraction 1 2 3
Aggregate (10-5) 0.65 1.3 1.95
Binder (10-5) 1.09 2.18 3.28
Table 3  Expansion coefficient of Sodium
Fig.3  Single aggregate expansion stress distribution (unit:Pa) (a) X direction, (b) Y direction
Fig.4  Distribution of sodium concentration in aggregate with different shapes 3600 s (unit: mm) (a) circle, (b) ellipse, (c) polygon
Fig.5  Aggregate model Y direction expansion displacement in different shapes 10800 s (unit: mm) (a) circle, (b) ellipse, (c) polygon
Fig.6  Aggregate model X direction stress distribution in different shapes10800 s (unit: Pa) (a) circle, (b) ellipse, (c) polygon
Fig.7  Aggregate model Y direction stress distribution in different shapes10800 s (unit: Pa) (a) circle, (b) ellipse, (c) polygon
Fig.8  Expansion displacement and stress curve of aggregate model in different shapes (a) expansion displacement time curve, (b) radial element X direction stress, (c) radial element Y direction stress
Fig.9  Distribution of sodium concentration in different graded aggregate mode 3600 s (unit: mm) (a) 0.003~0.006 m, (b) 0.003~0.009 m, (c) 0.003~0.015 m
Fig.10  Aggregate model Y direction expansion displacement in different grading 10800 s (unit: mm) (a) 0.003~0.006 m, (b) 0.003~0.009 m, (c) 0.003~0.015 m
Fig.11  Aggregate model X direction stress distribution in different grading 10800 s (unit: Pa) (a) 0.003~0.006 m, (b) 0.003~0.009 m, (c) 0.003~0.015 m
Fig.12  Aggregate model Y direction stress distribution in different grading 10800 s (unit: Pa) (a) 0.003~0.006 m, (b)0.003~0.009 m, (c) 0.003~0.015 m
Fig.13  Expansion displacement and stress curve of aggregate model in different gradin (a) expansion displacement time curve, (b) radial element X direction stress, (c) radial element Y direction stress
Fig.14  Distribution of sodium concentration in different aggregate model 3600 s (unit: mm) (a) 60%, (b) 70%, (c) 80%
Fig.15  Aggregate model Y direction expansion displacement in different content 10800 s (unit: mm) (a) 60%, (b) 70%, (c) 80%
Fig.16  Aggregate model X direction stress distribution in different content 10800 s (unit: Pa) (a) 60%, (b) 70%, (c) 80%
Fig.17  Aggregate model Y direction stress distribution in different content 10800 s (unit: Pa) (a) 60%, (b) 70%, (c) 80%
Fig.18  Expansion displacement and stress curve of aggregate model of different content 10800 s (a) expansion displacement time cur, (b) radial element X direction stress, (c) radial element Y direction stress
Fig.19  Schematic diagram of sodium expansion test device
Fig.20  Comparison of numerical simulation and actual test
[1] Fang Z, Zhang K.Alkali metals (K and Na) penetration and its effects on expansion of TiB2-C composite cathode during aluminum electrolysis[J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 1847
[2] Sun H, Zikanov O, Finlayson B A, et al.The influence of the basic flow and interface deformation on stability of Hall-Heroult cells [A]. Kvande H. Light Metals 2005[C]. San Francisco, CA: TMS, 2005: 437
[3] Zolochevsky A, Hop J G, Foosnaes T, et al.Surface exchange of sodium, anisotropy of diffusion and diffusional creep in carbon cathode materials [A]. Kvande H. Light Metals 2005[C]. San Francisco, CA: TMS, 2005: 745
[4] Solheim A, Moxnes B P, Vamraak K, et al.Energy recovery and amperage increase in aluminium cells by active cooling of the anode yokes [A]. Beame G. Light Metals 2009[C]. Warrendale: TMS, 2009: 1091
[5] Lai Y Q, Xu J, Lv X J, et al.Effect of inorganic particles on properties of modified pitches and pitch based TiB2/C composite cathodes for aluminium electrolysis[J]. J. Central South Univ.(Sci. Technol.), 2012, 43: 2029(赖延清, 胥建, 吕晓军等. 铝电解TiB2/C复合阴极用煤沥青的无机改性[J]. 中南大学学报(自然科学版), 2012, 43: 2029)
[6] Liu Q S, Xue J L, Zhu J, et al.Effects of additives on the sodium penetration and expansion of carbon-based cathodes during aluminum electrolysis[J]. J. Univ. Sci. Technol. Beijing, 2008, 30: 403(刘庆生, 薛济来, 朱骏等. 添加剂对铝电解炭基阴极钠渗透膨胀过程的影响[J]. 北京科技大学学报, 2008, 30: 403)
[7] Stewart M G, Wang X M, Nguyen M N.Climate change impact and risks of concrete infrastructure deterioration[J]. Eng. Struct., 2011, 33: 1326
[8] Zhang H H, Zhang H L, Cui X F, et al.Impact of cathode carbon block material on the thermal-electric field in aluminum reduction cell[J]. Nonferrous Met. Eng. Res., 2011, 23(2): 13(张翮辉, 张红亮, 崔喜风等. 阴极炭块材料对铝电解槽电热场影响的研究[J]. 有色冶金设计与研究, 2011, 32(2): 13)
[9] Xu Z L.Elasticity [M]. 4th ed. Beijing: Higher Education Press, 2011(徐芝纶. 弹性力学[M]. 4版. 北京: 高等教育出版社, 2011)
[10] Song X G, Yang Z C.A new method to simulate round concrete aggregate generation[J]. Eng. Mech., 2010, 27(1): 154(宋晓刚, 杨智春. 一种新的混凝土圆形骨料投放数值模拟方法[J]. 工程力学, 2010, 27(1): 154)
[11] Liu Q S, He W, Zeng F J, et al.Damage properties of carbon cathodes under different aluminium electrolysis time[J]. J. Mater. Eng., 2013, (7): 92(刘庆生, 何文, 曾芳金等. 不同铝电解时间下阴极炭块的损伤特性研究[J]. 材料工程, 2013, (7): 92)
[12] Zolochevsky A, Hop J G, Servant G, et al.Creep and sodium expansion in a semigraphitic cathode carbon[A]. Kvande H. Light Metals 2003[C]. San Francisco, CA: TMS, 2003: 595
[13] Yan L, Yang C H, Wang C.Influence of coarse aggregates' shape index and gradation in self-compacting concrete's rheological behavior and working performance[J]. Concrete, 2011, (1): 75(严琳, 杨长辉, 王冲. 粗骨料颗粒形状指数、级配对自密实混凝土工作性能的影响[J]. 混凝土, 2011, (1): 75)
[14] Chauke L, Garbers-Craig A M. Reactivity between carbon cathode materials and electrolyte based on industrial and laboratory data[J]. Carbon, 2013, 58: 40
[15] Coulombe M A, Lebeuf M, Chartrand P, et al.Carburation phenomenons at the cathode block/metal interface [A]. Johnson J A. Light Metals 2010[C]. Warrendale, PA, USA: TMS, 2010: 811
[1] YANG Dongya, LI Weitao, WANG Honggang, GAO Gui, CHENG Shengsheng, REN Junfang, TIAN Song. Effect of Counterpart Ring Surface Roughness on Wear Process of Bismuth Bronze[J]. 材料研究学报, 2021, 35(10): 732-740.
[2] Qingsheng LIU,Zhenming XU,Weidong TANG. Numerical Analysis and Experimental Research of Sodium Diffusion Process Based on Microstructure of Electrolytic Cathode Carbon Block[J]. 材料研究学报, 2017, 31(3): 233-240.
[3] Zhijun MA, Changye MANG, Junce WANG, Xingyuan WENG, Liwei SI, Zhihao GUAN. Influence of Doping with Metal Ions Co2+, Mn2+ and Cu2+ on Absorbability of Nano Ni-Zn Ferrite[J]. 材料研究学报, 2017, 31(12): 909-917.
[4] KANG Zhiqiang WANG Engang ZHANG Lin HE Jicheng. Numerical Analysis of the Microstructure Evolution of Monotectic Alloys in Magnetic Field[J]. 材料研究学报, 2011, 25(2): 124-128.
[5] YANG Junying JIA Yuxi DING Yanyu ZHANG Guofang . Numerical simulation of mold filling stage in resin transfer molding processes based on VOF/PLIC method[J]. 材料研究学报, 2009, 23(6): 622-627.
[6] PENG Lan FAN Juyan LI Yourong ZHU Jia. Numerical simulation of thermocapillary convection in detached solidification under microgravity[J]. 材料研究学报, 2009, 23(4): 431-436.
[7] ;. Numerical simulation of macro--segregation with equiaxed grains movement[J]. 材料研究学报, 2004, 18(3): 232-238.
[8] LIU Juncheng;JIE Wanqi;ZHOU Yaohe(State Key Laboratory of Solidthetion Processing; Northwestern Polytechnical University). NUMERICAL STUDY ON THE FACTORS AFFECTING THE CONVECTION DURING ACRT[J]. 材料研究学报, 1997, 11(1): 8-14.
[9] HUANG Li;SONG Xianhui(Wuhan University of Technology)PENG Lihua;SHEN Wei(Huazhong University of Scienceand Technology). NUMERICAL SIMULATION OF SURFACE CRACK PROPAGATION FOR GLASS[J]. 材料研究学报, 1996, 10(5): 541-543.
No Suggested Reading articles found!