Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (4): 285-290    DOI: 10.11901/1005.3093.2016.454
ARTICLES Current Issue | Archive | Adv Search |
Preparation of Uniform Hollow Spheres of Gd2O3 by Using Melamine-Formaldehyde Microspheres as Templates
Chi ZHANG, Gang SUN, Wenyi OUYANG, Huiting QIN, Donghui LI, Chu YAO, Xueliang JIANG()
School of Material Science and Engineering, Wuhan Institute of Technology,Wuhan 430074, China
Cite this article: 

Chi ZHANG, Gang SUN, Wenyi OUYANG, Huiting QIN, Donghui LI, Chu YAO, Xueliang JIANG. Preparation of Uniform Hollow Spheres of Gd2O3 by Using Melamine-Formaldehyde Microspheres as Templates. Chinese Journal of Materials Research, 2017, 31(4): 285-290.

Download:  HTML  PDF(2700KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Monodispersed microspheres of melamine-formaldehyde (MF) was fabricated by polycondensation crosslinking process with aqueous solution of melamine and formaldehyde as raw material. Then the core-shell structure precursor of composite microspheres MF/Gd(OH)CO3 was prepared by a urea-based homogeneous precipitation technique with MF microspheres as templates. Finally hollow microspheres of Gd2O3 were obtained by calcination of the MF/Gd(OH)CO3 to remove tempaltes. The morphology and structure of the hollow microspheres Gd2O3 were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractomater (XRD), X-ray energy dispersive spectroscopy (XPS), thermal gravimetric analysis (TG) and differential scanning calorimetry (DSC). The results show that the MF templates can be effectively removed and the amorphous precursor of composite microspheres MF/Gd(OH)CO3 has converted to crystalline Gd2O3 during the annealing progress. The generated hollow spheres of Gd2O3 possess particle size of about 2.4 μm and shell thickness of 120 nm.

Key words:  inorganic non-metallic materials      melamine formaldehyde      template      hollow spheres      gadolinium oxide     
Received:  01 August 2016     
ZTFLH:  TB383  
Fund: Supported by National Natural Science Foundation of China (No.51273154), College President Fundation of Wuhan Institute of Technology (No.CX2015085) and Graduate Student Education Innovation Foundation of Wuhan Institute of Technology (No.CX2016003)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.454     OR     https://www.cjmr.org/EN/Y2017/V31/I4/285

Fig.1  FT-IR spectra of MF templates (a),MF/Gd(OH)CO3 composite microspheres (b) and Gd2O3 hollow microspheres (c) samples
Fig.2  TG patterns of MF templates (a),MF/Gd(OH)CO3 composite microspheres (b) and Gd2O3 hollow microspheres (c) samples
Fig.3  DSC curves of MF/Gd(OH)CO3 composite microspheres
Fig.4  XRD patterns of MF/Gd(OH)CO3 composite microspheres (a) and Gd2O3 hollow microspheres (b) samples
Fig.5  XPS wide spectrum (a) and Gd 4d spectrum (b) of patterns of Gd2O3 hollow spheres
Fig.6  SEM images of MF templates (a),MF/Gd(OH)CO3 composite microspheres (b) and Gd2O3 hollow spheres (c) samples
Fig.7  TEM images of MF/Gd(OH)CO3 composite microspheres (a, b) and Gd2O3 hollow spheres (c, d) samples
Fig.8  Preparation process chart of Gd2O3 hollow spheres
[1] Chen F, Chen Z G, Li X Z, et al.Synthesis of CeO2 Hollow Nanosphere Using Carbon Sphere as Template[J]. J. Chin. Ceram. Soc., 2011, 39(3):397(陈丰, 陈志刚, 李霞章等. 以碳球为模板合成氧化铈纳米空心球[J]. 硅酸盐学报, 2011, 39(3): 397)
[2] Fei H, Piao P Y, Dong W, et al.Preparation and up-conversion luminescence of hollow La2O3:Ln (Ln=Yb/Er,Yb/Ho) microspheres[J]. Langmuir, 2011, 27: 5616
[3] Yi X S, Li X Z, Yong B W, et al.Hollow and hollow core/shell CeO2/SiO2@CeO2 spheres: synthesis, structure evolution and catalytic properties[J]. Journal of Alloys and Compounds, 2014, 586: 441
[4] Ling W Z, Da Q C, Feng H, et al.Uniform Eu3+:CeO2 hollow microspheres formation mechanism and optical performance[J]. Journal of Alloys and Compounds, 2012, 534: 64
[5] Yun H H, Shi L G, Ping A M, et al.Highly uniform α-NaYF4:Yb/Er hollow microspheres and their application as drug carrier[J]. Inorganic Chemistry, 2013, 52: 9184
[6] Gan T, Zhan J G, Xiao X L, et al.Facile fabrication of rare-earth-doped Gd2O3 hollow spheres with upconversion luminescence, magnetic resonance, and drug delivery properties[J]. The Journal of Physical Chemistry C, 2011, 115: 23790
[7] Wang S Z, Zhao Y Z, Hao X K, et al.Study on Preparation and Physical Properties of Large Particle Gadolinium Oxide[J]. Chinese Rare Earths, 2014, 35(2):63(王士智, 赵永志, 郝先库等. 大颗粒氧化钆的制备及物理性能研究[J]. 稀土. 2014, 35(2): 63)
[8] Fan L Q, Li Z L, Huang Y F, et al.Application of Gd2O3:Er3+ Up-Conversion Luminescent Powder in Dye-Sensitized Solar Cells[J]. Chinese J. Inorg. Chem., 2015, 31(1): 147(范乐庆, 李兆磊, 黄昀昉等. Gd2O3:Er3+上转换发光粉在染料敏化太阳电池中的应用[J]. 无机化学学报. 2015, 31(1): 147)
[9] Zhu W Q, Chen H J, Xing X P, et al.Synthesis and characterization of Gd2(CO3)3·H2O and Gd2O3 by solvothermai method[J]. J. Xi'an Polytech. Univ., 2014, 28(2): 187(朱文庆, 陈浩军, 邢西萍等. 水热法微/纳米Gd2 (CO3)3H2O和Gd2O3的合成与表征[J]. 西安工程大学学报. 2014, 28(2): 187)
[10] Wang H B.Preparation and Properties of Gadolinium oxide/Poly(ether ether ketone) composites [D]. Jilin: Jilin University, 2013(王海滨. 氧化钆/聚醚醚酮复合材料的制备及性能研究[D]. 吉林: 吉林大学, 2013)
[11] Abdullah M. M., Rahman M. M., Bouzid H., et al. Sensitive and fast response ethanol chemical sensor based on as-grown Gd2O3 nanostructures[J]. Journal of Rare Earths. 2015, 33(2): 214
[12] Wang Y, Bai X, Liu T, et al.Solvothermal synthesis and luminescence properties of monodisperse Gd2O3: Eu3+ and Gd2O3: Eu3+@SiO2 nanospheres[J]. Journal of Solid State Chemistry. 2010, 183: 2779
[13] Yang J, Li C X, Cheng Z Y, et al.Size-tailored synthesis and luminescent properties of one-dimensional Gd2O3: Eu3+ nanorods and microrods[J]. The Journal of Physical Chemistry C. 2007, 111(49): 18148
[14] Jia G, Liu K, Zheng Y H, et al.Highly uniform Gd(OH)3 and Gd2O3: Eu3+ nanotubes: facile synthesis and luminescence properties[J]. The Journal of Physical Chemistry C. 2009, 113(15): 6050
[15] Paek J., Lee C. H., Choi J., et al. Gadolinium oxide nanoring and nanoplate: anisotropic shape control[J]. Crystal Growth & Design. 2007, 7(8): 1378
[16] Huang J.Rare earth doped Lu2O3, Gd2O3 and Gd2O2S hollow/core-shell microspheres: Preparation and luminescence properties [D]. Jilin: Jilin University, 2013(黄晶. 稀土掺杂Lu2O3、Gd2O3和Gd2O2S中空/核壳微球的制备及发光性质研究 [D]. 吉林: 吉林大学, 2013)
[17] Li W, Zheng X M, Li F G, et al.Facile synthetic route to hollow gadolinium oxide spheres with tunable thickness[J]. Micro & Nano Letters. 2012, 7(12): 1267
[18] Zhang L X, Sun Y X, Jiu H F, et al.Facile synthesis and luminescence properties of Gd2O3: Tb hollow microspheres[J]. Micro & Nano Letters. 2011, 6(11): 927
[19] Tian G, Gu Z J, Liu X X, et al.Facile fabrication of rare-earth-doped Gd2O3 hollow spheres with upconversion luminescence, magnetic resonance, and drug delivery properties[J]. The Journal of Physical Chemistry C, 2011, 115: 23790
[20] Li J G, Li X D, Sun X D, et al.Uniform colloidal spheres for (Y1-x Gdx)2O3 (x=0-1): formation mechanism, compositional impacts, and physicochemical properties of the oxides[J]. Chemistry of Materials. 2008, 20: 2274
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!