Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (4): 279-284    DOI: 10.11901/1005.3093.2016.225
ARTICLES Current Issue | Archive | Adv Search |
Effect of Ca/Ti Molar Ratio on Structure and Photocatalytic Properties of CaTiO3 with Dendrite Structure
Weixia DONG1,2(), Gaoling ZHAO2, Qifu BAO1, Xingyong GU1
1 Department of Materials Science and Engineering, Jingdezhen Ceramic Institute,Jingdezhen 333001, China
2 State Key Lab of Silicon Material & Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
Cite this article: 

Weixia DONG, Gaoling ZHAO, Qifu BAO, Xingyong GU. Effect of Ca/Ti Molar Ratio on Structure and Photocatalytic Properties of CaTiO3 with Dendrite Structure. Chinese Journal of Materials Research, 2017, 31(4): 279-284.

Download:  HTML  PDF(3357KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Calcium titanite CaTiO3 with dendrite structure were prepared by solvothermal method while adjusting the molar ratio of Ca/Ti. The microstructure and optical performance of the prepared CaTiO3 were characterized by means of X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared (FT-IR) spectrometer and UV-visible (UV-vis) spectrophotometer. The results show that Ca/Ti molar ratio has an important effect on the morphologies and phases of the prepared CaTiO3. The morphology of the obtained CaTiO3 changed from nano-sheets to aggregated prisms and then to butterfly-like dendrite structure with the increasing Ca/Ti molar ratio. The mechanism for the CaTiO3 morphology changes was atributed to the transformation from the oriented self-assembly accompanied by Ostwald ripening to the diffusion-controlled process of “dissolution”. When Ca/Ti molar ratio is 1/2-1/1.5, the prepared CaTiO3 is composed of nanosheets and aggregated irregular prisms. With the increase of Ca/Ti molar ratio, nanosheets transforms to irregular prisms. When Ca/Ti molar ratio is 1/1-1.2/1, the prepared CaTiO3 exhibited mainly dendritic morphology, which was gradually developed with the increasing Ca/Ti molar ratio. When the Ca/Ti molar ratio rises to 1.25/1 and 2/1, the phases of Ca3Ti2O7 and CaCO3 appear due to the excess amount of Ca2+ ions in the solutions. When Ca/Ti molar ratio is 1.2/1, pure CaTiO3 with dendrite structure, as a micrometer-scale structured material, showed the optimum value of 0.0187 min-1 for the photocatalytic degradation, which is much convenient for storage and handling.

Key words:  inorganic non-metallic materials      CaTiO3 dendrites      Ca/Ti molar ratio      solvothermal method      photocatalytic properties     
Received:  25 April 2016     
ZTFLH:  TB321  
Fund: Supported by National Natural Science Foundation of China (No.51502119), Major Natural Science Foundation of Jiangxi Province in China (No.20152ACB21022), Major Scientific and Technological cooperation foundation of Jiangxi Province in China (No.20161BBH80048), Educational Project of Jiangxi Province in China (No.GJJ14629) and Jingdezhen technology bureau (No.701301-352)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.225     OR     https://www.cjmr.org/EN/Y2017/V31/I4/279

Fig.1  XRD patterns of samples of different molar ratio of Ca:Ti (a) Ca:Ti=1:2, (b) Ca:Ti=1:1.5, (c) Ca:Ti=1:1, (d) Ca:Ti=1.1:1, (e) Ca:Ti=1.2:1, (f) Ca:Ti=1.25:1, (g) Ca:Ti=1. 5:1, (h) Ca:Ti=1.75:1, (i) Ca:Ti=2:1
Fig.2  FESEM images of samples of different molar ratio of Ca:Ti (a) Ca:Ti=1:2, (b) Ca:Ti=1:1.5, (c) Ca:Ti=1:1, (d) Ca:Ti=1.1:1, (e) Ca:Ti=1.2:1, (f) Ca:Ti=1.25:1, (g) Ca:Ti=1. 5:1, (h) Ca:Ti=1.75:1, (i) Ca:Ti=2:1
Fig.3  FESEM image (a), TEM image (b), HRTEM image (c) caught from the tip of the trunk marked with white circle and SEAD pattern (inset) of the samples
Ca/Ti molar ratio Crystal structure Morphology SBET/(m2g–1)
1:2 CaTiO3, CaTi2O5, Ti7O13 nanoflake, irregular aggregated prisms 6.86
1:1.5 CaTiO3, CaTi2O5, Ti7O13 aggregated prisms (prevailer) 6.82
1:1 CaTiO3 aggregated prisms (prevailer); irregular dendrites 6.89
1.1:1 CaTiO3 irregular dendrites (prevailer) 6.91
1.2:1 CaTiO3 dendrites 6.92
1.25:1 CaTiO3 ,CaCO3 dendrites 6.94
1.5:1 CaTiO3,CaCO3,Ca(OH)2 dendrites 6.95
1.75:1 CaTiO3,CaCO3,Ca(OH)2 dendrites 7.01
2:1 CaTiO3,CaCO3,Ca(OH)2 dendrites 7.02
Table 1  Crystal structure, morphology and BET surface areas of samples of different molar ratio of Ca:Ti
Fig.4  FT-IR spectra of CaTiO3 samples of different molar ratio of Ca/Ti in pure water
Fig.5  Plots of photocatalytic degradation of the samples of different molar ratio of Ca:Ti (a) Ca:Ti=1:2, (b) Ca:Ti=1:1.5, (c) Ca:Ti=1:1, (d) Ca:Ti=1.1:1, (e) Ca:Ti=1.2:1, (f) Ca:Ti=1.25:1, (i) Ca:Ti=2:1
Fig.6  Plots of photocatalytic degradation of the samples of different molar ratio of Ca:Ti
[1] Wang Y, He Y, Lai Q, et al.Review of the progress in preparing nano TiO2: An important environmental engineering material[J]. Journal of Environmental Sciences, 2014, 26(11): 2139
[2] Gao L, Zheng S, Zhang Q H.Nano Titanium Oxide Photocatalytic Materials and Its Application [M]. Beijing: Chemical Industry Press, 2002(高濂, 郑珊, 张青红. 纳米氧化钛光催化材料及其应用[M]. 北京: 化学工业出版社, 2002)
[3] Modeshia D R, Walton R L.Solvothermal synthesis of perovskites and pyrochlores: crystallization of functional oxides under mild conditions[J]. Chem. Soc. Rev., 2010, 39, 4305
[4] Sayad N, Saadi A, Nemouchi S, et al.Hydrogenation/hydrogenolysis of benzaldehyde over CaTiO3 based catalysts[J]. Stud. Sur. Sci. Catal., 2010, 175, 377
[5] Zhao H, Duan Y, Sun X.Synthesis and characterization of CaTiO3 particles with controlled shape and size[J]. New J. Chem., 2013, 37, 986
[6] Dong W X, Song B, Meng W J, et al.A simple solvothermal process to synthesize CaTiO3 microspheres and its photocatalytic properties[J]. Appl. Phys. A-mater., 2015, 349, 272
[7] Zhong W Z, Liu G Z, Shi E W.Crystal growth under hydrothermal conditions and its formation[J]. Science China (B), 1994, 24, 394(仲维卓, 刘光照, 施而畏, 在热液条件下晶体的生长基元与晶体形成机理[J]. 中国科学(B辑), 1994, 24, 394)
[8] Shi E W, Zhong W Z, Hua X K.Growth model of the anion coordination polyhedron[J]. Science China (E), 1998, 28(1): 37(施而畏, 仲维卓, 华素坤. 关于负离子配位多面体生长基元模型[J]. 中国科学(E辑), 1998, 28(1): 37)
[9] Huang Y J, Tsai M C, Chiu H T, et al.Artificial synthesis of platelet-like kassite and its transformation to CaTiO3[J]. Cryst. Growth Des., 2010, 10, 1221
[10] Dong W X, Zhao G L, Song B, et al.Surfactant-free fabrication of CaTiO3 butterfly-like dendrite via a simple one-step hydrothermal route[J]. Cryst. Eng. Comm., 2012, 14, 6990
[11] Duffy G M, Pillai S C, McCormack D E. The effect of the rate of precursor production on the purity and aggregation morphology of nanoparticulate zinc oxide[J]. J. Mater. Chem., 2007, 17, 181
[12] Musi? S,Goti? M, Ivanda M, et al.Chemical and micro structural properties of TiO2 synthesized by sol-gel procedure[J]. Mater. Sci. Eng. B, 1997, 47, 33
[13] Nakamoto K.Infrared and raman spectra of inorganic and coordination compounds[M]. Toronto: A Wiley-Interscience Publication, 1997
[14] Hashim M, Hu C G, Wang X, et al.Synthesis and photocatalytic property of lead molybdate dendrites with exposed (001) facet[J]. Appl. Surf. Sci., 2012, 285(15), 5858
[15] Tang J, Zou Z, Ye J.Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation[J]. Angew. Chem. Int. Ed., 2004, 43, 4463
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!