Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (2): 117-122    DOI: 10.11901/1005.3093.2015.497
Orginal Article Current Issue | Archive | Adv Search |
Property of Composite with Coarse Grain WC Prepared by Plasma In-situ Metallurgy of Ni/W/C Powder
Jian ZHAO1,2(),Ning LIU2,Chenghai TIAN3,Qiang JI3,Huiqi LI1,Shufeng WANG1,Jing CHI1,Jiannan LI1
1 College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2 College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
3 Qingdao Haina Plasma Technology Co., Ltd, Qingdao 266590, China
Cite this article: 

Jian ZHAO,Ning LIU,Chenghai TIAN,Qiang JI,Huiqi LI,Shufeng WANG,Jing CHI,Jiannan LI. Property of Composite with Coarse Grain WC Prepared by Plasma In-situ Metallurgy of Ni/W/C Powder. Chinese Journal of Materials Research, 2017, 31(2): 117-122.

Download:  HTML  PDF(3861KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ball-studs with coarse grained WC were prepared on Q345 steel plateby in-situ plasma metallurgy method with powder mixtures of Ni/W/C as raw material on. The microstructure, composition, phase constituent and microhardness of the ball-studs were characterized by means of SEM, EMPA, XRD and microhardness tester. The results show that among others, the powder mixture with 40% Ni could produce the most desirable ball-studs with brighter surface, higher compactness and stronger adhe sive to the substrate; coarse granules of WC with an average size ca 80μm evenly distributed in the inner portion of the ball-stud matrix of (Fe,Ni); meanwhile, the network-pattern eutectic structure of Ni17W3 and (Fe, Ni) can be detected. The average microhardness of ball-stud is 1183.517HV0.1, while the microhardness of the coarse grain of WC is 2078HV0.1.

Key words:  metallic materials      plasma in-situ metallurgy      coarse grain WC      microhardness      metallographic structure     
Received:  28 January 2016     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.497     OR     https://www.cjmr.org/EN/Y2017/V31/I2/117

Fig.1  Sample of Ni/W/C powder
No Ni W C
No.1(Ni50%) 50 47 3
No.2(Ni40%) 40 56.4 3.6
No.3(Ni30%) 30 65.8 4.2
Table 1  Content ratio of Ni/W/C powder (%,mass fraction)
No Current
(A)
Voltage
(V)
Time
(S)
Large plasma gas (L/M) Small plasma gas (L/M) Shielding gas
(L/M)
No.1/No.2/No.3 220 40 15 4 2 10
Table 2  Test parameters of plasma in-situ metallurgy
Fig.2  Sketch map of plasma in-situ metallurgy
Fig.3  Macroscopic morphologies of Ni/W/C powder samples with different Ni content after plasma in-situ metallurgical treatment (a) Ni50%, (b) Ni40%, (c) Ni30%
Fig.4  Microstructure of sample nearby bonding zone (Ni40%,200 magnification times)
Fig.5  Microstructure of Ni/W/C powder samples with different Ni content after plasma in-situ metallurgical treatment (a) 50%Ni, (b) 40%Ni, (c) 30%Ni
Fig.6  XRD spectrum of Ni/W/C powder samples with different Ni content after plasma in-situ metallurgical treatment
Fig.7  Liquidus projection of the W-Fe-C ternary phase diagram
Phase
Element
a b c d e f g h i j
W 48.67 45.37 1.06 47.96 2.48 8.94 35.64 39.76 60.63 4.28
C 49.86 41.16 5.87 49.61 7.95 8.74 40.15 15.89 21.47 8.45
Ni 1.05 9.35 69.87 1.56 47.21 70.65 14.34 1 0.07 41.21
Fe 0.42 4.12 23.20 0.87 42.36 11.67 9.87 43.35 17.83 46.06
Table 3  Atomic number percentage according to the EDS analysis results for different phases (%)
Phase WC FeNi3 (Fe,Ni) The eutectic structure of Ni17W3 and (Fe,Ni) Fe3W3C
HV 1755.89 387.97 520.64 823.56 987.35
Table 4  Mean value of different phases' microhardness
Fig.8  Microhardness value of the samples
[1] Zhao M H, Liu A G, Guo M H.Research on WC reinforced metal matrix composite[J].Welding, 2006, (11): 27
[1] (赵敏海, 刘爱国, 郭面焕. WC颗粒增强耐磨材料的研究现状[J]. 焊接, 2006, (11): 27)
[2] Zhang D, Zhang G D, Li Z Q.The current state and trend of metal matrix composities[J]. Materials China, 2010, 29(4): 2
[2] (张荻, 张国定, 李志强. 金属基复合材料的现状与发展趋势[J]. 中国材料进展, 2010, 29(4): 2)
[3] Wang S F.Study of tungsten carbide composite produced by in-situ metallurgy[D]. Qingdao:Shandong University of Science and Technology, 2011
[3] (王淑峰. 原位冶金碳化钨复合材料研究[D]. 青岛: 山东科技大学, 2011)
[4] Yu J M, Xiao Y Z, Wang Q J, et al.New development of technology of clad metal[J]. Chinese Journal of Materials Research, 2000, 14(1): 12
[4] (于九明, 孝云祯, 王群骄等. 金属层状复合技术及其新进展[J]. 材料研究学报, 2000, 14(1): 12)
[5] Huang H K, Li Z L, Shan Q, et al.Interface remelting of tungsten carbide particles reinforced steel composite[J]. Chinese Journal of Materials Research, 2014, 28(3): 191
[5] (黄浩科, 李祖来, 山泉等. 碳化钨/钢基复合材料的界面重熔[J]. 材料研究学报, 2014, 28(3): 191)
[6] Wang L, Hu S B, Shan W T, et al.Microstructure and wear resistance of laser cladding NiCrMn-WC composite coatings[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(1): 149
[6] (王璐, 胡树兵, 单炜涛等. 激光熔覆NiCrMn-WC 复合涂层的组织与耐磨性[J]. 中国有色金属学报, 2014, 24(1): 149)
[7] Li Z L, Jiang Y H, Zhou R, et al.Thermo-physical characteristics of WC particle-reinforced steel substrate surface composites[J]. Chinese Journal of Materials Research, 2014, 28(8): 622
[7] (李祖来, 蒋业华, 周荣等. 碳化钨颗粒增强钢基表层复合材料的热物理特性[J]. 材料研究学报, 2014, 28(8): 622)
[8] Wang W G, Zhang H J, Wang Q Z, et al.Effects of carbide inhibitor on microstructures and mechanical properties of ultrafine grained carbide cement WC-2.5TiC-10Co[J]. Chinese Journal of Materials Research, 2015, 29(12): 883
[8] (王文广, 张贺佳, 王全兆等. 碳化物抑制剂对WC-2.5TiC-10Co超细晶硬质合金微观组织及力学性能的影响[J]. 材料研究学报, 2015, 29(12): 883)
[9] R. Furushima, K. Katou, K. Shimojima, et al.Control of WC grain sizes and mechanical properties in WC-FeAl composite fabricated from vacuum sintering technique[J]. International Journal of Refractory Metals and Hard Materials, 2015, (50): 17
[10] Bai Y L, Wu C H, Yang X, et al.Coarsen grain WC-Co cemented carbide fabricated by nanometer powder dissolution method[J].Materials Science and Engineering of Powder Metallurgy, 2012, 17(4): 502
[10] (白英龙, 吴冲浒, 杨霞等. 纳米粉末溶解法制备粗晶WC-Co硬质合金[J]. 粉末冶金材料科学与工程, 2012, 17(4): 502)
[11] Wang Q.Microstructure performance and abrasive wear behaviour of metal tungsten carbide coatings deposited by HVOF and oxygen-acetylene flame spray and fuse[D]. Changsha: Hunan University, 2011
[11] (王群. 热喷涂(焊)金属WC涂层组织、性能及抗磨粒磨损行为研究[D]. 长沙: 湖南大学, 2011)
[12] Lu J B, Wang Z X, Xi Y J.Study on NiCrBSi steel PWC composite coating prepared by plasma cladding on Q235 steel[J]. Transactions of Materials and Heat Treatment, 2009, 30(4): 142
[12] (卢金斌, 王志新, 席艳君. Q235钢等离子熔覆添加碳化钨铁基合金涂层的研究[J]. 材料热处理学报, 2009, 30(4): 142)
[13] Li F Q, Chen Y B, Li L Q.Microstructure and wear property of surface modification layer produced by laser melt injection WC on Q235 steel[J]. Transactions of the China Welding Institution, 2010, 31(4): 32
[13] (李福泉, 陈彦宾, 李俐群. Q235钢表面激光熔注WC涂层的微观组织及耐磨性[J]. 焊接学报, 2010, 31(4): 32)
[14] Chi J, Li H Q, Wang S F, et al.Coarse-grain bulk WC composites prepared by direct current arc in-situ metallurgy[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(5): 1263
[14] (迟静, 李惠琪, 王淑峰等. 直流电弧原位冶金制备粗晶碳化钨块体复合材料[J]. 中国有色金属学报, 2013, 23(5): 1263)
[15] D. V. Suetin, I. R. Shein, A. L.Ivanovskii.Structure electronic and magnetic properties of η carbides (Fe3W3C, Fe6W6C, Co3W3C, Co6W6C) from first principles calculations[J]. Physica B, 2009, 404: 3545
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!