Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (2): 110-116    DOI: 10.11901/1005.3093.2016.182
Orginal Article Current Issue | Archive | Adv Search |
Durability and Pore Structure of Nano-particle-modified Geopolymers of Waste Brick Powder-class C Fly Ash
Xiaolu GUO1,2(),Huisheng SHI1,2
1 Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Tongji University, Shanghai 201804, China
2 School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
Cite this article: 

Xiaolu GUO,Huisheng SHI. Durability and Pore Structure of Nano-particle-modified Geopolymers of Waste Brick Powder-class C Fly Ash. Chinese Journal of Materials Research, 2017, 31(2): 110-116.

Download:  HTML  PDF(1894KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nano particle modified composite geopolymers were prepared with waste brick powder (WBP) and class C fly ash (CFA) as raw material, and nano-particales SiO2 and Al2O3 as modifier. Then their anti-permeability and anti-freezing-thawing as well as their pore structure were investigated. Results show that nano-SiO2 is superior to nano-Al2O3 for enhancing the performance of geopolymers, and the combination of 2%(mass fraction) nano-SiO2 and 1% nano-Al2O3 exhibits the best modification effect, so that the geopolymer possesses the highest anti-permeability and anti-freezing-thawing. It is found for the geopolymers after being freezing-thawing tested that the apparent porosity, true porosity, average pore size, the size of the most probable pores and the total porosity all enhanced, however the volume density decreased. Besides, the harmless and less-harmful holes with size smaller than 50 nm decreased, and in the contrast,the harmful and more-harmful holes increased.

Key words:  inorganic non-metallic materials      waste brick powder      fly ash      geopolymer      nano-modification      resistance to permeability      resistance to freezing-thawing      pore structure     
Received:  07 April 2016     
Fund: Supported by the National Natural Science Foundation of China (No.51478328), and the Fundamental Research Funds for the Central Universities (No.0500219225)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.182     OR     https://www.cjmr.org/EN/Y2017/V31/I2/110

Fig.1  XRD pattern of raw materials (a) class C fly ash (CFA); (b) waste brick powder (WBP)
Content Na2O MgO Al2O3 SiO2 K2O CaO Fe2O3 Others
Class C fly ash (CFA) 1.28 1.85 22.00 50.30 3.42 11.30 7.10 2.74
Waste brick powder (WBP) 1.34 3.36 10.3 42.8 2.11 26.3 6.91 6.88
Table 1  Chemical composition of raw materials (%, mass fraction)
Type Particle size
/nm
Specific surface area
/m2g-1
Density
/gcm-3
Hydrophily
/ Hydrophobicity
Color
SiO2 30±5 400 0.4 Hydrophily White
Al2O3(α) 30±5 100 1.7 Hydrophily White
Table 2  Basic physical properties of nano- SiO2 and nano-Al2O
Samples CFA
/g
WBP
/g
Sand
/g
Composite activator
/g
Water
/g
Nano-particle
Nano-SiO2
/g
Nano-Al2O3
/g
SCFA 600.00 - 1620.00 323.45 71.09 - -
SWBP 420.00 180.00 1620.00 323.45 71.09 - -
SW 0-3 420.00 180.00 1620.00 323.45 71.09 - 18.00
SW 1-2 420.00 180.00 1620.00 323.45 71.09 6.00 12.00
SW 2-1 420.00 180.00 1620.00 323.45 71.09 12.00 6.00
SW 3-0 420.00 180.00 1620.00 323.45 71.09 18.00 -
Table 3  Mix ratio of nano-modified solid waste-based composite geopolymeric mortar
Samples Fluidity / mm Strength / MPa
3 d 28 d
Flexural Compressive Flexural Compressive
SCFA 198 3.1 13.8 5.0 40.5
SWBP 195 3.2 15.9 5.3 42.5
SW 0-3 166 3.6 18.7 6.4 48.8
SW 1-2 185 3.8 18.2 6.7 50.9
SW 2-1 193 4.2 20.5 7.5 53.7
SW 3-0 157 3.8 20.1 7.1 51.5
Table 4  Fluidity and strength of geopolymer
Samples 7d impermeability pressure /MPa 28d penetration height/mm 28d water absorption ratio /%
SCFA 1.5 13.1 7.5
SWBP 1.7 11.8 6.1
SW 0-3 1.9 10.3 5.8
SW 1-2 2.0 10.5 5.4
SW 2-1 2.1 9.8 5.1
SW 3-0 2.0 10.7 5.5
Table 5  Impermeability and water absorption ratio of geopolymer
Fig.2  Mass loss ratio of geopolyer after freezing-thawing cycles
Fig.3  Loss ratio of geopolyer strength after freezing-thawing cycles (a) Loss ratio of compressive strength; (b) Loss ratio of flexural strength
Samples Bulk density /gcm-3 Apparent porosity /% Ture porosity /%
Before freezing- thawing After freezing-thawing Before freezing- thawing After freezing-thawing Before freezing- thawing After freezing-thawing
SCFA 1.63 1.51 27.66 36.09 41.45 47.16
SWBP 1.69 1.57 25.49 32.89 38.64 43.94
SW 0-3 1.71 1.60 22.85 30.19 37.06 41.80
SW 1-2 1.73 1.62 22.53 29.32 35.30 40.47
SW 2-1 1.78 1.71 20.39 26.27 33.21 37.16
SW 3-0 1.75 1.66 21.51 28.79 34.12 39.74
Table 6  Bulk density, apparent porosity, and ture porosity of samples before and after 80 freezing-thawing cycles
Samples Porosity/% Mean pore size /nm The most probable aperture/nm Distribution of pore size /%
<20 nm 20~50 nm 50~200 nm >200 nm
SWBP 25.2 101.1 90.9 10.4 25.7 38.6 25.3
DWBP 31.3 135.4 107.1 3.9 16.5 39.5 40.1
Table 7  Pore structure parameter of geopolymer before and after freezing-thawing cycles
Fig.4  Effects of freezing-thawing cycles on pore diameter distribution of geopolymer (a) integral curve of pore diameter distribution; (b) differential curve of pore diameter distribution
[1] Rao F, Liu Q.Geopolymerization and its potential application in mine tailings consolidation: a review[J]. Miner. Process. Extr. Metall. Rev., 2015, 36: 399
[2] Tchadjié L N, Djobo J N Y, Ranjbar N, et al. Potential of using granite waste as raw material for geopolymer synthesis[J]. Ceram. Int., 2016, 42: 3046
[3] Hou Y F.Fly Ash-Based Geopolymer[M]. Beijing: Chemistry Industry Press, 2014
[3] (侯云芬. 粉煤灰基地质聚合物[M]. 北京: 化学工业出版社, 2014)
[4] Zhang Y R, Kong X M.Influences of PCE superplasticizer on the pore structure and the impermeability of hardened cementitious materials[J]. J. Adv. Concr. Technol., 2014, 12: 443
[5] Kameche Z A, Ghomari F, Choinska M, et al.Assessment of liquid water and gas permeabilities of partially saturated ordinary concrete[J]. Constr. Build. Mater., 2014, 65: 551
[6] Auroy M, Poyet S, Le Bescop P, et al.Impact of carbonation on unsaturated water transport properties of cement-based materials[J]. Cement Concrete Res., 2015, 74: 44
[7] Ma Y, Hu J, Ye G.The pore structure and permeability of alkali activated fly ash[J]. Fuel, 2013, 104: 771
[8] Olivia M, Nikraz H R.Strength and water penetrability of fly ash geopolymer concrete[J]. ARPN J. Eng. Appl. Sci., 2011, 6: 70
[9] Nasvia M C M, Ranjitha P G, Sanjayan J. The permeability of geopolymer at down-hole stress conditions: Application for carbon dioxide sequestration wells[J]. Appl. Energy, 2013, 102: 1391
[10] Ye Q.Research and development of nano-cement composite[J]. New. Build. Mater., 2001, (11): 4
[10] (叶青. 纳米复合水泥结构材料的研究与开发[J]. 新型建筑材料, 2001, (11): 4)
[11] Chen R S, Ye Q.Research on the comparison of properties of hardened cement paste between nano-SiO2 and silica fume added[J]. Concrete, 2002, (1): 7
[11] (陈荣升, 叶青. 掺纳米SiO2与掺硅粉的水泥硬化浆体的性能比较[J]. 混凝土, 2002, (1): 7)
[12] Ye Q, Zhang Z N, Chen R S, et al.Interaction of nano-SiO2 with portlandite at interface between hardened cement paste and aggregate[J]. J. Chin. Ceram. Soc., 2003, 31: 517
[12] (叶青, 张泽南, 陈荣升等. 纳米SiO2与水泥硬化浆体中Ca(OH)2的反应[J]. 硅酸盐学报, 2003, 31: 517)
[13] Zhu K Z, Li Y W, Zhu H Y, et al.Research development on the nano-modification cement[J]. Cement Guide for New Epoch, 2011, (3): 6
[13] (朱孔赞, 李因文, 朱化雨等. 纳米改性水泥的研究进展[J]. 新世纪水泥导报, 2011, (3): 6)
[14] Shi H S, Guo X L.Civil Engineering Materials[M]. 2nd ed. Chongqing: Chongqing University Press, 2013
[14] (施惠生, 郭晓潞. 土木工程材料[M]. 第二版. 重庆: 重庆大学出版社, 2013)
[15] Dunaszegi L.HPC for durability of the confederation bridge[A]. HPC Bridge Views[C]. Skokie, IL: National Concrete Bridge Council, 1999
[16] Top?u I B, Toprak M U, Uyguno?lu T.Durability and microstructure characteristics of alkali activated coal bottom ash geopolymer cement[J]. J. Clean. Prod., 2014, 81: 211
[17] Wu Z W, Lian H Z.High Performance Concrete[M]. Beijing: China Railway Publishing House, 1999
[17] (吴中伟, 廉慧珍. 高性能混凝土[M]. 北京: 中国铁道出版社, 1999)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!