Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (12): 931-940    DOI: 10.11901/1005.3093.2015.12.931
Orginal Article Current Issue | Archive | Adv Search |
Edgewise Compressive Property for Sandwich Panel of Steel Plates with Isosceles-trapezoid Honeycomb Core of Fiber Cloth Reinforced Epoxy Resin
Jiliang ZHENG(),Yong SUN,Mingjun PENG
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Cite this article: 

Jiliang ZHENG,Yong SUN,Mingjun PENG. Edgewise Compressive Property for Sandwich Panel of Steel Plates with Isosceles-trapezoid Honeycomb Core of Fiber Cloth Reinforced Epoxy Resin. Chinese Journal of Materials Research, 2015, 29(12): 931-940.

Download:  HTML  PDF(2533KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The edgewise compressive property of sandwich panel of steel plates with isosceles-trapezoid honeycomb core of fiber cloth reinforced epoxy resin is measured by using a material testing machine, while a simulation mode is established to describe the edgewise compressive behavior. The edgewise compressive pressure may induce three types of damages of the sandwich panel, namely, the broken of plates, the buckling instability of the sandwich panel and the detachment of plates with the honeycomb core. Under an applied edgewise compressive pressure, the plates are the main load bearing component of the sandwich panel, while the honeycomb core acts only as a connector and supporter . The parameter related with the structure and the material of the plates has a great influence on the in-panel compressive strength and the bearing stress for the sandwich panel. In the contrast, parameter related with the structure and the material of the honeycomb core has a small influence on the compressive strength of the sandwich panel, but the height of honeycomb core has a great influence on the bearing stress of the sandwich panel.

Key words:  inorganic non-metallic materials      isosceles-trapezoid honeycomb core      compressive strength      load stress      sandwich panel      in-plane compression     
Received:  05 March 2015     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.12.931     OR     https://www.cjmr.org/EN/Y2015/V29/I12/931

Fig.1  Isosceles-trapezoid honeycomb core of glass steel sandwich panel geometry (a) and unit cell body’s geometry parameters (b)
Fig.2  Finite element model (a) and mesh element (b) and boundary conditions (c) and path (d) for isosceles trapezoid-glass steel honeycomb core's sandwich panel under end compressive loading
Fig.3  Different damage way's von-Mises and deformation cloud picture for isosceles-trapezoid honeycomb core of glass steel sandwich panel (a) panel is broken, (b) sandwich panel is instability, (c) panel and honeycomb core is separation
Fig.4  Distribution of interfacial normal stress (z) and maximum shear stress (b) for paths in honeycomb core and interfacial maximum shear stress (c) for paths in panel
Fig.5  Deformation schematic diagram of isosceles-trapezoid honeycomb core of glass steel sandwich panel
Fig.6  Compressive strength of broken panel in isosceles-trapezoid honeycomb core of glass steel sandwich panel is impacted by fiber’s arrangement direction in honeycomb core and panel, (a) ROT.X in part1 and part3, (b) ROT.Z in part1 and part3, (c) ROT.X and ROT.Y in part2, (d) ROT.Y and ROT.Z in panel
Fig.7  Effects of panel's thickness (a), Part2's thickness t1 (b), Part2's height h (c), upper-side's length a (d) and height hc (e) on Break a compressive strength of isosceles-trapezoid for honeycomb core's cross section shape
Fig.8  Compressive strength of buckling unstable isosceles trapezoid honeycomb core of glass steel sandwich panel is impacted by fiber's arrangement direction in honeycomb core and panel (a) ROT.X and ROT.Z in Part1 and Part3, (b) ROT.X and ROT.Y in Part2, (c) ROT.Y and ROT.Z in panel
Fig.9  Effects of panel's thickness (a)、Part2's thickness t1 (b)、Part2's height h (c)、upper-side's length a and height hc (d) of isosceles-trapezoid for honeycomb core's cross section shape on buckling instability load stress
1 DU Shanyi, Advanced composite materials and aerospace engineering, Acta Materiae Compositae Sinica CS, 24(1), 1(2007)
1 (杜善义, 先进复合材料与航空航天, 复合材料学报, 24(1), 1(2007))
2 Zabihpoor M, Adibnazari S.Mechanisms of fatigue damage in foam core sandwich composites with unsymmetrical carbon/glass face sheets, Journal of Reinforced Plastics and Composites, 26(17), 1831(2007)
3 Vaidya U K, Pillay S, Impact and post impact vibration response of protection metal foam composite sandwich plates, Materials Science and Engineering A, 428(1), 59(2006)
4 Nemat-Nasser S, Kang W J, McGee J D, Experimental investigation of energy absorption characteristics of component of sandwich structures, International Journal of Impact Engineering, 34(6), 1119(2007)
5 SUN Zhi, SHI Shanshan, SUN Shiyong, Compression performance and interfacial properties of carbon fiber-foam metal sandwich beams with aramid fiber toughening, Acta Materiae Compositae Sinica , 31(6), 1497(2014)
5 (孙直, 石珊珊, 孙士勇, 芳纶纤维增韧碳纤维泡沫金属夹芯梁压缩性能及界面性能, 复合材料学报, 31(6), 1497(2014))
6 Wang C, Chen H R, Lei Z K, Experimental investigation of interfacial fracture behavior in foam core sandwich beams with visco-elastic adhesive interface, Composite Structure, 92(5), 1085(2010)
7 Sun Z, Jeyaraman J, Sun S Y, Carbon-fiber aluminum foam sandwich with short aramid-fiber interfacial toughening, Applied Science and Manufacturing, 2012, 43(11), 2059(2012)
8 Sun S Y, Chen H R, The interfacial fracture behavior of foam core composite sandwich structures by a viscoelastic cohesive model, Science China Physics, Mechanics & Astronomy, 54(8), 1481(2011)
9 YAN Guang, HAN Xiaojin, YAN Chuliang, Bucking analysis of composite cylindrical shell under axial compression load, Acta Materiae Compositae Sinica , 31(3), 781(2014)
9 (闫光, 韩小进, 阎楚良, 复合材料圆柱壳轴压屈曲性能分析, 复合材料学报, 31(3), 781(2014))
10 YANG Yanzhi, ZHENG Quan, LI Hao, Numerical simulation and test on stability of composite grid stiffened cylinder, Acta Materiae Compositae Sinica , 2(1), 295(2015)
10 (杨颜志, 郑权, 李昊, 复合材料格栅圆柱筒稳定性数值仿真与试验, 复合材料学报, 32(1), 295(2015))
11 JIN Yu’an, GUO Shiju, LI Zhijun, In-plane compressive properties of mild steel honeycomb sandwich, Materials for Mechanical Engineering, 31(8), 19(2007)
11 (井玉安, 果世驹, 李志军, 刚蜂窝夹芯板面内压缩性能, 机械工程材料, 31(8), 19(2007))
12 Karagiozova D, Yu T X, Plastic deformation models of regular hexagonal honeycomb under in-plane biaxial compression, International Journal of Mechanical Science, 46(10), 1489(2004)
13 Wang A J, McDowell D L, In-plane stiffness and yield strength of periodic metal honeycombs, Journal of Engineering Materials and Technolog, 126(2), 137(2004)
14 TIAN Aiping, YU Wei, LI Dongjie, Compressive and flexural mechanical properties of foam Al-HGM/epoxy foam composites, Acta Materiae Compositae Sinica , 2013, 30(4), 74(2013)
14 (田爱平, 余为, 李东杰, 泡沫铝-空心玻璃微珠/环氧泡沫复合材料压缩及弯曲力学性能, 复合材料学报, 30(4), 74(2013))
15 Ting-Chun Lin, Ting-Jung Chen, Jong-Shin Huang, In-plane elastic constants and strengths of circular cell honeycomb, Composites and Science and Technology, 72(4), 1380(2012)
16 Tantikom K, Aizawa T, Mukai T, Symmetric and asymmetric deformation transition in the regularly cell structure materials, International Journal of Solid and Structure, 45(12), 2512(2008)
17 Zhang W H, Sun S P, Scale-related topology optimization of cellular materials and structures, International Journal for Numerical Methods in Engineering, 68(3), 993(2006)
18 ZHENG Jiliang, Sun yong, PENG Mingjun, Mechanical properties of composite material based on fiber pull-out theory, Ordance Material Science And Engineering, 37(2), 16(2014)
18 (郑吉良, 孙勇, 彭明军, 基于纤维拔出理论的复合材料力学性能的研究, 兵器材料科学与工程, 37(2), 16(2014))
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!