Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (12): 941-947    DOI: 10.11901/1005.3093.2015.12.941
Orginal Article Current Issue | Archive | Adv Search |
High Temperature Oxidation of a Low Nickel Austenitic Heat Resistant Steel
Lincai WU,Licong AN,Yitao YANG()
School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
Cite this article: 

Lincai WU,Licong AN,Yitao YANG. High Temperature Oxidation of a Low Nickel Austenitic Heat Resistant Steel. Chinese Journal of Materials Research, 2015, 29(12): 941-947.

Download:  HTML  PDF(7408KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High temperature oxidation performance of ZG40Cr25Ni20 steel and a kind of low nickel austenitic heat resistant cast steel were comparatively investigated by means of isothermal oxidation test, scanning electron microscope(SEM) with energy dispersive spectrometry (EDS) and X-ray diffraction analysis. The results show that a protective oxide scale Cr2O3 forms at the interface of substrate and the outer oxide scale, which can certainly block the inward diffusion of oxygen ions and the outwards diffusion of metal action, thereby reducing the oxidation rate, therefore, the heat-resistant cast steel exhibits better high temperature oxidation resistance in comparison with the ZG40Cr25Ni20 steel, whilst the nickel saving steel contains lower Ni but a little higher Cr and Mn than the ZG40Cr25Ni20 steel.

Key words:  materials failure and protection      high temperature oxidation performance      heat resistant steel      microstructure      low nickel     
Received:  15 February 2015     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.12.941     OR     https://www.cjmr.org/EN/Y2015/V29/I12/941

Material Cr Mn C Ni Bal
ZG40Cr25Ni20 25.13 1.17 0.36 18.92 Fe
Low nickel 27.53 1.78 0.34 9.26 Fe
Table 1  Chemical composition of the investigated austenite heat resistant steel (%, mass fraction)
Fig.1  Oxidation kinetics curves at 900℃、1000℃ and 1100℃ respectively
Sample Kp/mgcm-2h-1 n(1100℃) Q/kJ/mol
900℃ 1000℃ 1100℃
ZG40Cr25Ni20 4.7x10-8 3.0x10-4 2.2 1.9523 245.7
New material 4.3 x10-8 2.3 x10--6 3.8 x10-3 2.1354 148.4
Table 2  Kp, Q of the two experimental steel at 900℃, 1000℃, 1100℃ and oxidation rate index n at 1100℃
Fig.2  Thickness of oxide layer oxidized at 900℃, 1000℃ and 1100℃ respectively
Fig.3  SEM images of low nickel austenitic heat resistant steel (a-c) and ZG40Cr25Ni20 (d-f) oxidized at 900℃ (a, d), 900℃ (b, e) and 1100 (c, f) for 168 h
Fig.4  XRD spectra of low nickel austenitic heat resistant steel (a-c) and ZG40Cr25Ni20 (d-f) oxidized at 900℃ (a, d), 900℃ (b, e) and 1100 (c, f) for 168 h
Fig.5  SEM images and EDS of low nickel austenitic heat resistant steel (a) and ZG40Cr25Ni20 (b)
Fig.6  SEM images of surface cross-section of low nickel austenitic heat resistant steel (a) and ZG40Cr25Ni20 (b) oxidized for 168 h at 1100℃
Fig.7  EDS spectra of surface cross-section of low nickel austenitic heat resistant steel (a) and ZG40Cr25Ni20 (b) oxidized for 168 h at 1100℃
1 WANG Xiaotian, Metal Materials (Xi'an, Xi'an Jiao Tong University Press, 1999)p.46
1 (王笑天, 金属材料学(西安, 西安交通大学出版社, 1999)p.46)
2 XU Yi, Stydy on Re-high Cr-Ni-N heat resistant steel of boiler funnel cap of recycle ebullated bed, Master Degree thesis (Xi'an, Xi'an University of Technology, 2006)
2 (许义, 循环流化床锅风帽用稀土高铬镍氮系耐热钢的研制, 硕士学位论文(西安, 西安理工大学, 2006))
3 TENG Changling, Steel Materials Handbook, Vol.6: Heat-resistant steel(Beijing, China Standard Press, 2001)p.73
3 (滕长岺, 钢铁材料手册, 第6卷: 耐热钢(北京, 中国标准出版社, 2001)p.73)
4 LI tiefan, High Temperature Oxidation and Hot Corrosion Behavior of Metal (Beijing, Beijing Chemical Industry Press, 2004)p.215
4 (李铁藩, 金属高温氧化行为和热腐蚀(北京, 北京化学工业出版社, 2004)p.215)
5 HUANG Xunzeng, YANG yitao, High temperature oxidation behavior of a Nb and Ti stabilized 430 stainless steel, Chinese Journal of Materialresearch, 28(9), 1(2014)
5 (黄训增, 杨弋涛, 铌钛双稳定430不锈钢高温氧化行为研究, 材料研究学报, 28(9), 1(2014))
6 A. M. Huntz, A. Reckmann, C. Haut, C. Severac, M. herbst, F. C. T.Resende, A. C. S. Sabioni, Oxidaton of AISI304 and AISI439 stainless steels, Materials Science and Engineering A, 447, 266(2007)
7 LI Meishuan, High Temperature Corrosion of Metal (Beijing, Metallurgical Industry Press, 2001)p.39
7 (李美栓, 金属的高温腐蚀(北京, 冶金工业出版社, 2001)p.39)
8 WANG Haitao, Effect and mechanism of composite oxide scale on oxidation resistance of ferro based superalloys, PhD thesis, (Jinan, School of Materials Science and Engineering, Shandong University, 2010)
8 (王海涛, 复合氧化膜对铁基高温合金抗氧化型能影响与机理研究, 博士学位论文(济南, 山东大学材料科学与工程学院, 2010))
9 H. Singh, D. Puri, S. Prakash, Rabindranath Maiti, Characterization of oxide scales to evaluate high temperature oxidation behavior of Ni-20Cr coated superalloys, Materials Science and Engineering A, 464, 110(2007)
10 Lu Liu, Zhigang Yang, Chi Zhang, Mitsutoshi Ueda, Kenichi Kawamura, Toshio Maruyama, Effect of grain size on the oxidation of Fe-13Cr-5Ni alloy at 973K in Ar-21 vol%O2, Corrison Science, 91, 195(2015)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[3] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[5] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[6] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[7] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[8] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[9] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[10] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[11] ZHANG Ruixue, MA Yingjie, JIA Yandi, HUANG Sensen, LEI Jiafeng, QIU Jianke, WANG Ping, YANG Rui. Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy[J]. 材料研究学报, 2023, 37(3): 161-167.
[12] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[13] DONG Yu'ang, YANG Huajie, BEN Dandan, MA Yunrui, ZHOU Xianghai, WANG Bin, ZHANG Peng, ZHANG Zhefeng. Excellent Cryogenic Tensile Properties of Ultra-fine Grained 316L Stainless Steel after Electropulsing Treatment in Liquid Nitrogen[J]. 材料研究学报, 2023, 37(3): 168-174.
[14] ZHAO Yunmei, ZHAO Hongze, WU Jie, TIAN Xiaosheng, XU Lei. Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy[J]. 材料研究学报, 2023, 37(3): 184-192.
[15] LIU Dongyang, TONG Guangzhe, GAO Wenli, WANG Weikai. Anisotropy of 2060 Al-Li Alloy Thick Plate[J]. 材料研究学报, 2023, 37(3): 235-240.
No Suggested Reading articles found!