Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (9): 707-713    DOI: 10.11901/1005.3093.2015.118
Current Issue | Archive | Adv Search |
Evaluation Method for Compatibility of Sasobit Warm Mix Asphalt Binder
Kefei LIU1,**(),Chaofan WU2,3
1. College of Civil Engineering and Mechanics, Central South University of Forestry & Technology,
Changsha 410004, China
2. College of Civil Engineering, Hunan University, Changsha 410082, China
3. Hunan Communications Research Institute, Changsha 410015, China
Cite this article: 

Kefei LIU,Chaofan WU. Evaluation Method for Compatibility of Sasobit Warm Mix Asphalt Binder. Chinese Journal of Materials Research, 2015, 29(9): 707-713.

Download:  HTML  PDF(2369KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The compatibility between 2 modifiers Styrene-Butadiene-Styrence Block Copolymer (SBS) and Sasobit and 70#A base asphalt was comparatively studied by means of solubility calculation, measurement of difference of segregation softening point, differential scanning calorimetry and atomic force scanning microscope. The results show that the solubility parameter can not reflect the influence of molecular weight on polymer compatibility, due to the asphalt and modifiers all have multiphase structures with high molecular weight, a complex structure should be expected for the bland of the asphalt and a modifier. The compatibility of the modified asphalt can not be simply evaluated as a whole by Hildebrand theoretical calculation formula. Adding Sasobit into base asphalt can not only increase the glass transition temperature of the base asphalt, but also change the shape of its endothermic peak curve significantly, so Sasobit has good compatibility with base asphalt. However, adding the two modifiers SBS and Sasobit can greatly reduce the compatibility between modifier and base asphalt.

Key words:  inorganic non-metallic materials      Sasobit warm mix asphalt      compatibility      solubility parameter      atomic force microscope     
Received:  10 March 2015     
Fund: *Supported by Science and Technology Project of the Ministry of Housing and Urban-rural Development No. 2012-K4-18, and Key Science and Technology Project of Science and Technology Department of Hunan Province No. 2011SK2022.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.118     OR     https://www.cjmr.org/EN/Y2015/V29/I9/707

Index 70#A base asphalt SBS modified asphalt Sasobit warm mix asphalt
Penetration (25℃, 5 s, 100 g) / 0.1 mm 76 58 53
Penetration index PI -0.8 0.33 0.30
Softening point TR&B (not less than) / ℃ 46.4 68.0 73.0
Ductility (10℃, not less than) / cm 46 63 26
Ductility (15℃, not less than) / cm >100 81 >100
Density (15℃) / gcm-3 1.010 1.029 1.009
Table 1  Main technical indexes of each asphalt binder
Melting point /℃ Flash point /℃ Viscosity (135℃)/Pas Penetration (25℃)/0.1 mm Penetration (65℃)/0.1 mm Density (25℃)/(gcm-3)
99 285 0.012 <1 7 0.9
Table 2  Basic technical indexes of Sasobit warm mix additive
Fig.1  Preparation process flow chart for modified asphalt
Material type Chemical composition δ value/(J1/2cm-3/2)
70#A base asphalt Asphaltene 10.93
Colloid 10.93
Aromatics 9.15
Saturates 7.45
SBS (styrene-butadiene-styrene block copolymer) Polystyrene (PS) 9.10
Polybutadiene (PB) 8.40
Sasobit(solid paraffin) N-alkanes (main components) 14.30
Table 3  Chemical composition and soluability parameter of each material
Material type 70#A base asphalt SBS modified asphalt Sasobit warm mix asphalt
Components Asphaltene /% 5.21 5%SBS+ 95%70#A 3%Sasobit +97%70#A
Colloid /% 26.39
Aromatics /% 48.84
Saturates /% 19.56
Solubility parameter of base asphalt or modifier δ/(J1/2cm-3/2) 9.47 8.61 14.30
δ difference between base asphalt and modifier /(J1/2cm-3/2) 0 0.86 4.83
Softening point /℃ 46.4 68.0 73.0
Difference of segregation softening point/℃ 1.3 10.3 3.3
Compatibility codfficient between base asphalt and modifier △/% - 10.53 77.08
Table 4  Test and calculation results for compatibility of different modifier and base asphalt
Fig.2  DSC curve of various asphalt binder
Test parameters 70#A SBS 70#A+Sasobit
Initial temperature of change endothermic peak /℃ 47.2 34.7 31.4
Peak temperature of endothermic peak /℃ 58.9 43.2 54.3
Peak area /mJ 19.743 35.670 65.172
Calorific calue of endothermic peak /mJ·mg-1 1.241 2.153 6.247
Glass transition temperature Tg /℃ -8.7 -10.7 -6.5
Table 5  DSC characteristics data of various asphalt binder
Fig.3  AFM images of 70#A base asphalt (a) micrograph of 5# point, (b) stereogram of 5# point
Fig.4  AFM images of SBS modified asphalt (a) micrograph of 3# point, (b) stereogram of 9# point
Fig.5  AFM images of 70#A + Sasobit warm mix asphalt (a) micrograph of 6# point, (b) stereogram of 6# point
Fig.6  AFM images of SBS+ Sasobit warm mix asphalt (a) micrograph of 7# point, (b) stereogram of 7# point
1 Wu C F,Zeng M L, Effects of additives for warm mix asphalt on performance grades of asphalt binders, Journal of Testing and Evaluation, 40(2), 272(2012)
2 WU Chaofan,ZENG Menglan, WANG Maowen, XIA Yang, Determination of the mixing and compaction temperatures for warm mix asphalt with Sasobit, Journal of Hunan University (Natural Science), 37(8), 2(2010)
2 (吴超凡, 曾梦澜, 王茂文, 夏 漾, 添加Sasobit 温拌沥青混合料的拌和与压实温度确定, 湖南大学学报 (自然科学版), 37(8), 2(2010))
3 P. Giovanni, M. Antonio, B. Dario,Effect of composition on the properties of SEBS modified aasphalts, European Polymer Journal, 42, 1113(2006)
4 F. Q. Dong, W. Z. Zhao, Y.Z. Zhang,In?uence of SBS and asphalt on SBS dispersion and the performance of modi?ed asphalt, Construction and Building Materials, 62, 5(2014)
5 H. Y. Fu, L. D. Xie, D. Y. Dou,Storage stability and compatibility of asphalt binder modi?ed by SBS graft copolymer, Construction and Building Materials, 21, 1533(2007)
6 B. Sengoz, G. Isikyakar,Evaluation of the properties and microstructure of SBS and EVA polymer modi?ed bitumen, Construction and Building Materials, 22, 1905(2008)
7 B. Sengoz, A. Topal, G. Isikyakar,Morphology and image analysis of polymer modi?ed bitumens, Construction and Building Materials, 23, 1990(2009)
8 A. Khadiyar, A. Kavussi,Rheological characteristics of SBR and NR polymer modi?ed bitumen emulsions at average pavement temperatures, Construction and Building Materials, 47, 1102(2013)
9 J. Q Zhu, A. Birgisson, N. Kringos,Polymer modi?cation of bitumen: advances and challenges, European Polymer Journal, 54, 36(2014)
10 Y. A. Golubev, O. V. Kovaleva, N. P. Yushkin,Observations and morphological analysis of supermolecular structure of natural bitumen by atomic force microscopy, Fuel, 87, 36(2008)
11 X. K. Yu, N. A. Burnham, R. B. Mallick,A systematic AFM-based method to measure adhesion differences between micron-sized domains in asphalt binders, Fuel, 113, 446(2013)
12 FANG Yang,GUO Li, LI Zhihui, Determination of indicator parameters of compatibility properties of mixture comprising SBS modifier and matrix asphalt, Petroleum Asphalt, 24(2), 16(2010)
12 (方 杨, 郭 莉, 李智慧, SBS与基质沥青相容性指标的研究, 石油沥青, 24(2), 16(2010))
13 RAN Qisheng,The solubility of sodium aluminosilicate hydrate in caustic soda solution, Foreign Light Metal, (4), 4(1966)
13 (冉启盛, 铝硅酸钠水合物在苛性钠溶液中的溶解度, 国外轻金属, (4), 4(1966))
14 LV Ya,YAN Kai, SUN Lei, n-Alkanes deposition from diesels by three–dimensional solubility parameters sphere model, Journal of East China University of Science and Technology( Natural Science Edition), 36(6), 758(2010)
14 (吕 涯, 闫 凯, 孙 磊, 应用三维溶解度参数球形模型研究柴油中正构烷烃的分离, 华东理工大学学报(自然科学版), 36(6), 758(2010))
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!