Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (9): 714-720    DOI: 10.11901/1005.3093.2014.651
Current Issue | Archive | Adv Search |
R-S-N Mathematical Model Based on TC18 by BW High Cycle Fatigue Test Data
Liang ZHU1,*(),Jing WANG1,Xiaohui LI1,Hongbo SUO2,Yiliang ZHANG1
1. College of Mechanical Engineering and Applied Electronics Technology Beijing University of Technology, Beijing 100022, China
2. Science and Technology on Power Beam Processing Lab Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024, China
Cite this article: 

Liang ZHU,Jing WANG,Xiaohui LI,Hongbo SUO,Yiliang ZHANG. R-S-N Mathematical Model Based on TC18 by BW High Cycle Fatigue Test Data. Chinese Journal of Materials Research, 2015, 29(9): 714-720.

Download:  HTML  PDF(1280KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

For the influence of stress ratio on fatigue life, fatigue tests of TC18 titanium alloy produced by build-up welding (TC18 by BW) samples were carried out under three stress ratios (R=0.5、R=0.06、R=-1), to draw three fatigue limits and 6 S-N curves of “stress amplitude life model ” and “ three-parameter model ”. Based on the integral relationship of the crack growth rate and fatigue life and considering both of mathematical models of fatigue life, a systematic investigation of the relationship between stress ratio (R) and fatigue life curve (S-N) was performed to build the fatigue life mathematical model (R-S-N). According to the modified formula proposed in this paper, the establishment of two R-S-N mathematical models, applicable for TC18 by BW materials. The results show that “stress amplitude” model can accurately predict moderate fatigue life, and “three-parameter fatigue” model is more suitable for the prediction of long-life area. The predictive value of two proposed R-S-N mathematical models are in better agreement with the experimental values, they can accurately predict the fatigue curve under any stress ratio in engineering.

Key words:  foundational discipline in materials science      stress ratio      fatigue life      fatigue limit      R-S-N mathematical models     
Received:  06 November 2014     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.651     OR     https://www.cjmr.org/EN/Y2015/V29/I9/714

Fig.1  Size of the sample for fatigue testing
Rj Number of Valid Sample Pairing Number Fatigue Limit /MPa Standard Deviation / MPa Coefficient Variation Regulation Coefficient Variation
0.5 12 6 889.17 20.7 0.023 0.040
0.06 13 6 747.08 14.2 0.019 0.040
-1 14 7 529.29 9.76 0.018 0.048
Table 1  All the results of the fatigue limit
R Smax lgSmax Sa lgSa lgN n
0.5 990 2.9956 247.5 2.3936 5 6
962.5 2.9834 240.6 2.3813 5.19 7
935 2.9708 233.8 2.3688 6.09 5
907.5 2.9578 226.9 2.3558 6.51 4
0.06 880 2.9445 413.6 2.6166 5.33 6
852.5 2.9307 400.7 2.6028 5.66 4
825 2.9165 387.8 2.5886 5.94 4
-1 600 2.7782 600 2.7782 4.57 7
560 2.7482 560 2.7482 4.82 6
550 2.7404 550 2.7404 4.88 6
Table 2  Experimental data with the grouped method
R Equations of Sa-N curve Equations of Smax-N curve
0.5 S a 43.22 N = 10 108.35 ( S m a x - 889.17 ) 2.14 N = 10 9.32
0.06 S a 21.8 N = 10 62.37 ( S m a x - 747.08 ) 2.61 N = 10 10.89
-1 S a 8.24 N = 10 27.47 ( S m a x - 529.29 ) 0.6 N = 10 5.68
Table 3  Equations of Sa-N curve、(Smax-S0)-N curve with different stress ratio
Fig.2  Fatigue limit paired up and down figure with R=0.5, R=0.06, R=-1
Fig.3  Sa-N curves of three stress ratio
R Equations a b
0.5 S a 43.22 N = 10 108.35 108.35 43.22
0.06 S a 21.8 N = 10 62.37 62.37 21.8
-1 S a 8.24 N = 10 27.47 27.47 8.24
表4  Sa-N 曲线方程中的参数
R Equations a b
0.5 ( S m a x - 889.17 ) 2.14 N = 10 9.32 9.32 2.14
0.06 ( S m a x - 747.08 ) 2.61 N = 10 10.89 10.89 2.61
-1 ( S m a x - 529.29 ) 0.6 N = 10 5.68 5.68 0.6
表5  Smax-N 曲线方程中的参数
Predictive value/MPa Experimental value/MPa Relative Error/%
S ^ 50 0.5 842.73 889.17 5.22
S ^ 50 0.06 718.01 747.08 3.89
S ^ 50 - 1 529.29 529.29 0
Table 6  The fatigue limit with different stress ratio
Fig.4  Smax-N curves of three stress ratio
Fig.5  Sa-N curves of model and real (a), Fig.5 Smax-N curves of model and real (b)
Fig.6  Sa-N curves with different stress ratio (a), Smax-N curves with different stress ratio (b)
1 GUO Yanjie,Influence of stress ratio on fatigue behavior of high strength steel, World Metals, 2009-11-17(12), (2009)
1 (郭廷杰, 高强度钢应力比对疲劳性能影响, 世界金属导报, 2009-11-17(12), (2009))
2 CAI Huanxin,CHENG Hao, SUN Jinxiu, Influencing regularity of stress ratio on fatigue strength of 16Mn steel welded joints, Shanxi architecture, 33(25), 102(2007)
2 (蔡焕新, 程 浩, 孙金秀, 应力比对16Mn钢焊接接头疲劳强度的影响规律, 山西建筑, 33(25), 102(2007))
3 XU Shiwen,DONG Mansheng, HU Zongjun, NIU Zhongrong, Fatigue test research on steel 42CrMo, Journal of Hefei University of Technology, 31(9), 1506(2008)
3 (许世文, 董满生, 胡宗军, 牛忠荣, 42CrMo钢疲劳试验研究, 合肥工业大学学报, 31(9), 1506(2008))
4 SHA Guiying,HAN Yu, LIU Teng, WANG Jie, LI Chaohua, Influence of stress ratio on fatigue behavior of Mg-3Al-2Sc alloy, Light Allow Fabrication Technology, 40(9), 61(2012)
4 (沙桂英, 韩 玉, 刘 腾, 王 杰, 李朝华,应力比对Mg-3Al-2Sc合金疲劳行为的影响, 轻合金加工技术, 40(9), 61(2012))
5 H. Q. Xue, H. Tao, R. P. Shao, B. Claude,Effect of stress ratio on long life fatigue behavior of Ti-Al alloy under flexural loading, Transactions of Nonferrous Metals Society of China, 18(3), 499(2008)
6 C. Q. Sun, Z. Q. Lei, Y. S. Hong,Effects of stress ratio on crack growth rate and fatigue strength for high cycle and very-high-cycle fatigue of metallic materials, Mechanics of Materials, 69(1), 227(2014)
7 S. Ishihara, A. J. Mcevily, M. Sato, K. Taniguchi, T. Goshima, The effect of load ratio on fatigue life and crack propagation behavior of an extruded magnesium alloy, International Journal of Fatigue, 31(11-12),(1788)2009
8 T. Sakai, Y. Sato, Y. Nagano, M. Takeda, N. Oguma,Effect of stress ratio on long life fatigue behavior of high carbon chromium bearing steel under axial loading, International Journal of Fatigue, 28(11), 1547(2006)
9 K. Tokaji,Effect of stress ratio on fatigue behavior in SiC particulate-reinforced aluminium alloy composite, Department of Mechanical and Systems Engineering, 28(6), 539(2005)
10 XIONG Junjiang, Fatigue and Fracture Reliability Engineering, First edition, (Beijing, National Defend Industy Press, 2008) p.60
10 熊俊江, 疲劳断裂可靠性工程学, 第一版, (北京, 国防工业出版社, 200860)
11 P. Paris, F. A. Erdogan, Critical analysis of crack growth laws, Journal of Basic Engineering, 85(3),(528)1963
12 WANG Kunqian,XU Renping, LIN Jiehui, Fatigue crack growth probability model based on stress ratio, Journal of Aerospace Power, 24(9), 2012(2009)
12 (王坤茜, 徐人平, 林捷晖, 考虑应力比的疲劳裂纹扩展概率模型, 航空动力学报, 24(9), 2012(2009))
13 XU Renoing,LI Shulan, WANG Kunqian, The effect of stress ratio P-da/dN-△K curve for 30CrMnSiNi2A steel, Engineering Mechanice, 22(2), 6(2005)
13 (徐人平, 李淑兰, 王坤茜, 应力比对30CrMnSiNi2A钢P-da/dN-△K曲线影响研究, 工程力学, 22(2), 6(2005))
14 OUYANG Hui,LIU Junzhou, SU Xiaoyan, the effect of stress ratio on fatigue crack growth rates, Acta Mechanica Solida Sinica, (4), 577(1984)
14 (欧阳辉, 刘俊洲, 苏小燕, 应力比R对疲劳裂纹扩展速率的影响, 固体力学学报, (4), 577(1984))
15 GAO Zhengtong, XIONG Junjian, Fatigue Reliability, 1st edition, (Beijing, Beihang University Press, 2000)p.293
15 (高镇同, 熊俊江, 疲劳可靠性, 第一版, (北京, 北京航空航天大学出版社, 2000)p.293)
[1] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] LIU Tianfu, ZHANG Bin, ZHANG Junfeng, XU Qiang, SONG Zhuman, ZHANG Guangping. Effect of Notch Stress Concentration Factors on Low-cycle Fatigue Performance of TC4 ELI Alloy[J]. 材料研究学报, 2023, 37(7): 511-522.
[3] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[4] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] SUN Yi, HAN Tongwei, CAO Shumin, LUO Mengyu. Tensile Properties of Fluorinated Penta-Graphene[J]. 材料研究学报, 2022, 36(2): 147-151.
[6] LU Xiaoqing,ZHANG Quande,WEI Shuxian. Theoretical Study on Photoelectric Characteristic of A-π-D-π-A Indole-based Dye Sensitizers[J]. 材料研究学报, 2020, 34(1): 50-56.
[7] Xuexiong LI,Dongsheng XU,Rui YANG. CPFEM Study of High Temperature Tensile Behavior of Duplex Titanium Alloy[J]. 材料研究学报, 2019, 33(4): 241-253.
[8] ZHAO Qingyun,CHENG Sirui,HUANG Hong. Mechanism of Fatigue Life Enhancement for 1240 MPaHi-lock Bolt of Ti-38644 Ti-alloy[J]. 材料研究学报, 2019, 33(10): 735-741.
[9] Shaojie WANG, Jing HAN, Wei ZENG, Xuemei ZHANG, Junwen ZHAO, Guangze DAI. Effect of Low Temperature on Mechanical Properties of ER8 Steel for Wheel Rim[J]. 材料研究学报, 2018, 32(6): 401-408.
[10] Li HUANG. Stability and Heat storage Capacity of Phase Change Emulsion Paraffin/Water[J]. 材料研究学报, 2017, 31(10): 789-795.
[11] TANG Cunjiang, SHANG Chengjia, GUAN Hailong, WANG Xuemin. Strain Hardening Behavior and Stress Ratio of High Deformability Pipeline Steel with Ferrite/Bainite Multi-phase Microstructure[J]. 材料研究学报, 2016, 30(6): 409-417.
[12] BAI Ru, CAI Gang, ZHANG Xiaomin, CHEN Wenqi, JIANG Yu. Numerical Simulation Analysis of Asymmetric Fatigue Failure for Iced Electric Power Transmission Line[J]. 材料研究学报, 2016, 30(2): 149-155.
[13] Yang CHEN,Cheng QIAN,Zhitang SONG,Guoquan MIN. Measurement of Compressive Young’s Modulus of Polymer Particles Using Atomic Force Microscopy[J]. 材料研究学报, 2014, 28(7): 509-514.
[14] Guiqin YU,Jianjun LIU,Yongmin LIANG. Synthesis and Tribological Performance of Guanidinium Ionic Liquids as Lubricants for Steel /Steel Contacts[J]. 材料研究学报, 2014, 28(6): 448-454.
[15] Xiaogang WANG,Yueyi LI,Hailan WANG,Cunlong ZHOU,Qinxue HUANG. Numerical Modeling for Roller Leveling Process of Bimetal-Plate[J]. 材料研究学报, 2014, 28(4): 308-313.
No Suggested Reading articles found!