Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (9): 679-685    DOI: 10.11901/1005.3093.2015.114
Current Issue | Archive | Adv Search |
Wear Resistance of a Texture-like Nickel-based Composite Coating
Yufu ZHANG1,2,Guirong YANG1,**(),Chaopeng HUANG1,Wenming SONG1,2,Jian LI3,Jinjun LV4,Yuan HAO1
1. State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2. Lanzhou Petroleum Machinery Institute, Lanzhou 730070, China
3. Wuhan Research Institute of Materials Protection, Wuhan 430030, China
4. College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
Cite this article: 

Yufu ZHANG,Guirong YANG,Chaopeng HUANG,Wenming SONG,Jian LI,Jinjun LV,Yuan HAO. Wear Resistance of a Texture-like Nickel-based Composite Coating. Chinese Journal of Materials Research, 2015, 29(9): 679-685.

Download:  HTML  PDF(5937KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A nickel-based (Ni0) composite coating, which was reinforced with 20%WC and 6% graphite particles and has a texture-like section morphology, was fabricated on steel substrate by vacuum cladding technology. Then its microstructure and tribological property under dry friction condition were characterized in comparison with other three coatings (Ni0, Ni0+20%WC and Ni0+6% graphite). The results show that the WC particles evenly distributed in the nickel-based (Ni0) alloy coatings and formed a special 3D reticular microstructure. The Ni-based alloy coating is mainly composed of γ-Ni solid solution, hard phases (Cr7C3, Cr23C6, CrB) and eutectic phases (Ni3Si, Ni3B). The cladd composite coating consisted of Ni0 with WC and graphite particles exhibits the highest wear resistance among the test coatings. The combination of texture-like structure (which was composed of WC particles and nickel base alloy) and graphite lubricant promoted the abrasion resistance of the composite coating by about 9.6 times in comparison to the pure Ni0 coating.

Key words:  materials failure and protection      nickel-based alloy      vacuum cladding      texture      WC     
Received:  05 March 2015     
Fund: *Supported by National Natural Science Foundation of China No. 51205178 and the Natural Science Foundation of Gansu Province No. 1208RJZA189.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.114     OR     https://www.cjmr.org/EN/Y2015/V29/I9/679

Fig.1  XRD spectra of vacuum melting Ni0+WC coating
Fig.2  Microstructure of vacuum melting claddings (a) Ni0, (b) Ni0+G, (c) Ni0+WC, (d) Ni0+WC+G
Fig.3  Wear rate and friction coefficient of four kinds of coating and the wear loss of the plate (a) friction coefficients and wear rate of the four coatings, (b) wear extent of Gr15 steel
Elements C O Si Cr Fe Ni
Composition 9.05 24.39 2.49 16.59 22.1 25.39
Table 1  Chemical composition of debris of Ni0+G (%, mass fraction)
Fig.4  SEM morphologies of worn surface of the claddings (a) Ni0, (b) Ni0+G, (c) Ni0+WC, (d) Ni0+WC+G
Fig.5  SEM micrographs of Ni0+WC+G (a, b) and EDS map of C on the worn surface (c)
1 Przyby?owicz J,Kusiński J, Structure of laser cladded tungsten carbide composite coatings, Journal of Materials Processing Technology, 109(1), 154(2001)
2 Badisch E,Kirchga?ner M, Influence of welding parameters on microstructure and wear behaviour of a typical NiCrBSi hardfacing alloy reinforced with tungsten carbide, Surface and Coatings Technology, 202(24), 6016(2008)
3 Sari N Y,Yilmaz M, Improvement of wear resistance of wire drawing rolls with Cr-Ni-B-Si+WC thermal spraying powders, Surface and Coatings Technology, 202(13), 3136(2008)
4 Murthy J K N,Venkataraman B, Abrasive wear behaviour of WC–CoCr and Cr3C2-20(NiCr) deposited by HVOF and detonation spray processes, Surface and Coatings Technology, 200(8), 2642(2006)
5 Tobar M J,Alvarez C, Amado J M, Morphology and characterization of laser clad composite NiCrBSi-WC coatings on stainless steel, Surface and coatings Technology, 200(22), 6313(2006)
6 ZHU Dingyi,GUAN Xiangfeng, DUI Weizhen, Preparation and structure properties of the nickel-graphite high temperature self-lubricating materials, The Chinese Journal of Nonferrous Metals, 14(5), 707(2004)
6 (朱定一, 关翔锋, 兑卫真, 镍-石墨高温自润滑材料的熔炼制备及其组织性能, 中国有色金属学报, 14(5), 707(2004))
7 WANG Qingnian,SUI Zhongxiang, Development of some foreign metal-matrix self-lubricating composites, Tribology, 17(1), 89(1997)
7 (王庆年, 隋忠祥, 国外某些金属基自润滑复合材料的开发与进展, 摩擦学学报, 17(1), 89(1997))
8 Liu X B,Liu H Q, Liu Y F, Effects of temperature and normal load on tribological behavior of nickel-based high temperature self-lubricating wear-resistant composite coating, Composites Part B: Engineering, 53, 347(2013)
9 ZHAO Wenjie,WANG Liping, XUE Qunji, Development and research progress of surface texturing on improving tribological performance of surface, Tribology, 31(6), 622(2011)
9 (赵文杰, 王立平, 薛群基, 织构化提高表面摩擦学性能的研究进展, 摩擦学学报, 31(6), 622(2011)
10 HU Tianchang,HU Litian, DING Qi, Tribological properties of laser textured surfaces of 45# steel under dry friction, Tribology, 30(1), 46(2010)
10 (胡天昌, 胡丽天, 丁 奇, 45#钢表面激光织构化及其干摩擦特性研究, 摩擦学学报, 30(1), 46(2010))
11 HU Tianchang,HU Litian, ZHANG Yongsheng, Preparation of composite lubrication structure and its tribological properties on 45# Steel Surface, Tribology, 32(1), 14(2012)
11 (胡天昌, 胡丽天, 张永胜, 45#钢表面复合润滑结构的制备及其摩擦性能研究, 摩擦学学报, 32(1), 14(2012))
12 Liyanage T,Fisher G, Gerlich A P, Influence of alloy chemistry on microstructure and properties in NiCrBSi overlay coatings deposited by plasma transferred arc welding (PTAW), Surface and Coatings Technology, 205(3), 759(2010)
13 LU Qi,LI Jinguo, JIN Tao, ZHOU Yizhou, SUN Xiaofeng, HU Zhuangqi, Competitive growth in bi-crystal of Ni-based superalloys during directional solidification, Acta Metallurgica Sinica, 46(6), 641(2011)
13 (卢 崎, 李金国, 金 涛, 周亦胄, 孙晓峰, 胡壮麒, 镍基双晶高温合金定向凝固过程中的竞争生长, 金属学报, 46(6), 641(2011))
14 Song W M,Yang G R, Hao Y, Lu J J, Microstructure and wear behaviour of Ni-based surface coating on copper substrate, Wear, 262(7), 868(2007)
15 J. Rodriguez, A. Martin, R. Fernández, J.E. Fernández,An experimental study of the wear performance of NiCrBSi thermal spray coatings, Wear, 255(7), 950(2003)
16 Wang H,Xia W M, Jin Y S, A study on abrasive resistance of Ni-based coating with a WC hard phase, Wear, 195(1), 47(1996)
17 YANG Guirong,ZHAO Hu, SONG Wenming, LI Jian, MA Ying, Wear behaviour of Ni-based composite coating with directional solidification structure, Chinese Journal of Materials Research, 27(3), 279(2013)
17 (杨贵荣, 赵 虎, 宋文明, 李健, 马颖, 定向凝固镍基复合涂层的摩擦磨损性能, 材料研究学报, 27(3), 279(2013))
[1] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[2] LIU Dongyang, TONG Guangzhe, GAO Wenli, WANG Weikai. Anisotropy of 2060 Al-Li Alloy Thick Plate[J]. 材料研究学报, 2023, 37(3): 235-240.
[3] WANG Wei, ZHOU Shanqi, GONG Penghui, ZHANG Haoze, SHI Yaming, WANG Kuaishe. Effect of Anneal Treatment on Microstructure, Texture and Mechanical Properties of TC4 Alloy Plates[J]. 材料研究学报, 2023, 37(1): 70-80.
[4] NING Bo, LI Zhichao, WU Huibin, ZHANG Bingjun, HUANG Manli, DING Chao. Mechanism of Improving Low Temperature Impact Toughness of 09MnNi Vessel Steel[J]. 材料研究学报, 2022, 36(9): 660-666.
[5] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[6] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[7] YUAN Qiangqiang, WANG Zhigang, JIANG Yongfang, ZHANG Yinghui, HUANG Ankang, YE Jieyun. Effect of Warm-rolled Temperature on Microstructure and Texture in Cr-Ti-B Low Carbon Steel[J]. 材料研究学报, 2022, 36(2): 81-89.
[8] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[9] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[10] GU Jiaqing, TANG Weineng, XU Shiwei. Microstructure Evolution During Tensile Deformation of an Extruded Mg-0.4Zn Alloy Plate[J]. 材料研究学报, 2021, 35(7): 553-560.
[11] XI Guoqiang, QIU Jianke, LEI Jiafeng, MA Yingjie, YANG Rui. Room Temperature Creep Behavior of Ti-6Al-4V Alloy[J]. 材料研究学报, 2021, 35(12): 881-892.
[12] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[13] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[14] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[15] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
No Suggested Reading articles found!