Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (9): 671-678    DOI: 10.11901/1005.3093.2015.134
Current Issue | Archive | Adv Search |
Optimization for Preparation of Phase Change and Humidity Control Composite Materials of Hexadecanol-Palmitic Acid-lauric Acid/SiO2
Hao ZHANG(),Xinjie HUANG,Xiuyu LIU,Gang TANG
School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243032, China
Cite this article: 

Hao ZHANG,Xinjie HUANG,Xiuyu LIU,Gang TANG. Optimization for Preparation of Phase Change and Humidity Control Composite Materials of Hexadecanol-Palmitic Acid-lauric Acid/SiO2. Chinese Journal of Materials Research, 2015, 29(9): 671-678.

Download:  HTML  PDF(1287KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Phase change and humidity control composite materials of hexadecanol-palmitic acid-lauric acid/SiO2 were prepared with SiO2 as carrier material and hexadecanol-palmitic acid-lauric acid as phase change material. The effect of processing parameters on performance of humidity- and temperature-control of the composite materials was investigated by uniform design and multivariate nonlinear regression. The results show that their effect may be ranked as a sequence as follows: mole ratio of absolute alcohol to tetraethyl orthosilicate > solution pH value > mole ratio of hexadecanol-palmitic acid-lauric acid to tetraethyl orthosilicate > ultrasonic wave power > mole ratio of deionized water to tetraethyl orthosilicate. The optimal processing parameters are as follows: solution pH value 2.68, ultrasonic wave power 113 W, mole ratio of deionized water to tetraethyl orthosilicate 9.03, mole ratio of absolute alcohol to tetraethyl orthosilicate 5.22, mole ratio of decanoic-palmitic acid to tetraethyl orthosilicate 0.51.

Key words:  inorganic non-metallic materials      hexadecanol-palmitic acid-lauric acid      SiO2      humidity controlling performance      temperature controlling performance      optimized preparation     
Received:  17 March 2015     
Fund: *Supported by National Natural Science Foundation of China No. 51206002.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.134     OR     https://www.cjmr.org/EN/Y2015/V29/I9/671

Molecular formula Solubility /(g100 g-1) Relative humidity/%
MgCl2 54.25 32.78
K2CO3 112.00 43.16
Mg(NO3)2 125.00 52.89
CoCl2 45.00 64.92
NaCl 39.12 75.29
KCl 34.70 84.34
K2SO4 12.00 97.30
Table 1  Relative humidity of saturated salt in water (25℃)
No. Factors
A B C D E
1# 2 200W 9 6 1
2# 3 400W 5 5 1
3# 4 100W 11 3 0.8
4# 5 300W 5 7 0.8
5# 6 500W 11 6 0.6
6# 2 100W 7 4 0.6
7# 3 300W 13 3 0.4
8# 4 500W 7 7 0.4
9# 5 200W 13 5 0.2
10# 6 400W 9 4 0.2
Table 2  Uniform design of hexadecanol-palmitic acid-lauric acid/SiO2 composite phase change and humidity controlling materials U10*(1010)
Relative humidity /% Equilibrium moisture content/(g/g)
1# 2# 3# 4# 5#
Absorption Desorption Absorption Desorption Absorption Desorption Absorption Desorption Absorption Desorption
32.78 0.0348 0.0381 0.0332 0.0372 0.0434 0.0497 0.0341 0.0371 0.0281 0.0299
43.16 0.0425 0.0467 0.0397 0.0448 0.0530 0.0606 0.0405 0.0442 0.0335 0.0359
52.89 0.0463 0.0516 0.0431 0.0491 0.0578 0.0663 0.0436 0.0477 0.0361 0.0390
64.92 0.0497 0.0541 0.0461 0.0513 0.0614 0.0688 0.0467 0.0504 0.0386 0.0412
75.29 0.0565 0.0600 0.0523 0.0571 0.0704 0.0768 0.0528 0.056 0.0434 0.0454
84.34 0.0669 0.0688 0.0610 0.0652 0.0840 0.0883 0.0620 0.0644 0.0507 0.0520
97.30 0.0806 0.0804 0.0746 0.0748 0.1027 0.1029 0.0744 0.0747 0.0603 0.0606
Relative humidity /% Equilibrium moisture content/(g/g)
6# 7# 8# 9# 10#
Absorption Desorption Absorption Desorption Absorption Desorption Absorption Desorption Absorption Desorption
32.78 0.0545 0.0614 0.0931 0.1045 0.0816 0.0912 0.0827 0.0930 0.0471 0.0532
43.16 0.0695 0.0786 0.1151 0.1297 0.1012 0.1136 0.1019 0.1144 0.0576 0.0653
52.89 0.0772 0.0873 0.1260 0.1428 0.1110 0.1255 0.1114 0.1252 0.0628 0.0715
64.92 0.0838 0.93 0.1364 0.1517 0.1202 0.1329 0.1204 0.1332 0.0678 0.0757
75.29 0.0973 0.1045 0.1570 0.1694 0.1390 0.1493 0.1388 0.1491 0.0778 0.0840
84.34 0.1171 0.1211 0.1881 0.1952 0.1668 0.1737 0.1666 0.1734 0.0927 0.0965
97.30 0.1438 0.1436 0.2293 0.2308 0.2045 0.2056 0.2034 0.2048 0.1125 0.1129
Table 3  Equilibrium moisture content of hexadecanol- palmitic acid- lauric acid/SiO2 composite phasechange and humidity controlling materials U10*(1010)
Fig.1  Cooling curves of hexadecanol-palmitic acid-lauric acid/SiO2 composite phase change and humidity controlling materials
No. Humidity controlling performance Temperature controlling performance Goal value
Absorption/(g/g) Desorption/(g/g) Average value/(g/g) Y1 Cooling time/s Y2 Y
1# 0.0806 0.0804 0.0805 0.3499 1740 0.9305 1.2804
2# 0.0746 0.0748 0.0747 0.3247 1870 1.0000 1.3247
3# 0.1027 0.1029 0.1028 0.4469 1330 0.7112 1.1581
4# 0.0744 0.0747 0.0746 0.3241 1565 0.8369 1.1610
5# 0.0603 0.0606 0.0605 0.2628 1310 0.7005 0.9633
6# 0.1438 0.1436 0.1437 0.6246 1575 0.8422 1.4669
7# 0.2293 0.2308 0.2301 1.0000 735 0.3930 1.3930
8# 0.2045 0.2056 0.2051 0.8913 760 0.4064 1.2977
9# 0.2034 0.2048 0.2041 0.8872 705 0.3770 1.2642
10# 0.1125 0.1129 0.1127 0.4899 865 0.4626 0.9525
Table 4  Target values Y
Items Beta Bt R
Constant -0.3243 0.0000 0.9982
A 0.2411 2.1464
B 0.0013 1.1885
C -0.0001 0.3594
D 0.4488 3.9954
E 1.0866 1.9344
A2 -0.0450 3.2405
B2 0.0000 1.2807
C2 0.0000 0.0000
D2 -0.0430 3.8526
E2 -1.0912 2.3761
Table 5  Correlation coefficient for Y
Fig.2  Equilibrium moisture content of optimal hexadecanol-palmitic acid-lauric acid/SiO2 composite phase change and humidity controlling materials
Fig.3  Cooling curves of optimal hexadecanol-palmitic acid-lauric acid/SiO2 composite phase change and humidity controlling materials
Fig.4  FI-IR spectra of SiO2 (a), hexadecanol-palmitic acid-lauric acid (b) and hexadecanol-palmitic acid-lauric acid/SiO2 composite phase change and humidity controlling materials (c)
Fig.5  SEM images of SiO2 (a) and hexadecanol-palmitic acid-lauric acid/SiO2 composite phase change and humidity controlling materials (b)
Fig.6  DSC curves of hexadecanol-palmitic acid-lauric acid (a) and hexadecanol-palmitic acid-lauric acid/SiO2 composite phase change and humidity controlling materials (b)
1 A. Pasupathy, L. Athanasius, R. Velraj, R.V. Seeniraj,Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management, Applied Thermal Engineering, 28(5-6), 556(2008)
2 C. K. Huynh,Building energy saving techniques and indoor air quality: a dilemma, International Journal of Ventilation, 9(1), 93(2010)
3 Z. H. Rao, S. F. Wang, Z. G. Zhang,Energy saving latent heat storage and environmental friendly humidity-controlled materials for indoor climate, Renewable and Sustainable Energy Reviews, 16(5), 3136(2012)
4 S. D. Sharma, H. Kitano, K. Sagara,Phase change materials for low temperature solar thermal applications, Res. Rep. Fac. Eng. Mie. Univ., 29, 31(2004)
5 D. Suresh, C. Raja, C. Dhanesh,Heat capacity measurement of organic thermal energy storage materials, J. Chem. Thermodynamics, 38, 1312(2006)
6 B. X. Li, T. X. Liu, L. Y. Hu, L. N. Gao,Fabrication and properties of microencapsulated paraffin@SiO2 phase change composite for thermal energy storage, ACS Sustainable Chemistry & Energy, 1(3), 374(2013)
7 ZHANG Hong,WU Xiaohua, WANG Xiaolei, WANG Qianqian, Structure and properties of lauric acid/cetyl alcohol/silicon dioxide composite phase change material, Journal of Materials Science & Engineering, 28(5), 672(2010)
7 (张 鸿, 武晓华, 王晓磊, 王倩倩, 月桂酸/十六醇/二氧化硅复合相变材料的结构与性能, 材料科学与工程学报, 28(5), 672(2010))
8 G. Y. Fang, Z. Chen, H. Li,Synthesis and properties of microencapsulated paraffin composites with SiO2 shell as thermal energy storage materials, Chemical Engineering Journal, 163(1-2), 154(2010)
9 YU Yongsheng,JING Qiangshan, SONG Fangfang, Study on the ternary phase change system of H/PA/LA, Journal of Building Materials, 16(1), 97(2013)
9 (于永生, 井强山, 宋方方, 十六醇/十六酸/十二酸三元复合相变体系研究, 建筑材料学报, 16(1), 97(2013))
10 FU Lujun,DONG Faqin, YANG Yushan, HE Ping, Preparation and characterization of binary fatty acid/SiO2 composite phase change energy storage materials, Journal of Functional Materials, 44(4), 1(2013)
10 (付路军, 董发勤, 杨玉山, 何 平, 二元脂肪酸/SiO2复合相变储能材料的制备与表征, 功能材料, 44(4), 1(2013))
11 MENG Duo,WANG Lijiu, Preparation and thermal properties of fatty acid/inorganic nano-particle form-stable phase change material, Journal of Building Materials, 16(1), 91(2013)
11 (孟 多, 王立久, 脂肪酸/无机纳米颗粒基定形相变材料的制备与热性能, 建筑材料学报, 16(1), 91(2013))
12 ZHANG Hao,HUANG Kai, HUANG Xinjie, Study on degradation effect of Ce-TiO2 photocatalyst coating on formaldehyde solution and its prediction model, Chinese Rare Earths, 35(4), 18(2014)
12 (张 浩, 黄 凯, 黄新杰, Ce-TiO2光催化涂料降解甲醛溶液的性能研究及预测模型, 稀土, 35(4), 18(2014))
13 LI Kuishan,ZHANG Xu, HAN Xing, ZHU Dongming. Experimental research of isothermal sorption curve of building materials, Journal of Building Materials, 12(1), 81(2009)
13 (李魁山, 张 旭, 韩 星, 朱东明, 建筑材料等温吸放湿曲线性能实验研究, 建筑材料学报, 12(1), 81(2009))
14 HUANG Zishuo,YU Hang, ZHANG Meiling, Humidity-control materials and their humidity absorption and desorpttion rate variation, Journal of Tongji University(Natural Science), 42(2), 310(2014)
14 (黄子硕, 于航, 张美玲, 建筑调湿材料吸放湿速度变化规律, 同济大学学报(自然科学版), 42(2), 310(2014))
15 S. Karaman, A. Karaipekli, A. Sari, A. Bicer . Polyethylene glycol(PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage, Solar Energy Materials and Solar Cells, 95(7), 1647(2011)
16 XIE Suchao,GAO Guangjun. Multiple nonlinear regression anaiysis for energy absorbing prediction of thin-walled structure, Journal of Basic Science and Engineering, 18(4), 714(2010)
16 (谢素超, 高广军, 薄壁结构吸能预测的多元非线性回归分析, 应用基础与工程科学学报, 18(4), 714(2010))
17 ZHOU XiaoHua,ZHANG ShuRen, TANG Bin, Multiple non-linear regression analysis for complex doping of X7R MLCC ceramics, Journal of Inorganic Materials, 21(3), 683(2006)
17 (周晓华, 张树人, 唐 斌, 环保型多重掺杂X7R瓷料的多元非线性回归分析, 无机材料学报, 21(3), 683(2006))
18 YANG Duo,Space tube-shaped fitting algorithm based on spatial Gauss-Newton method, Journal of Dalian University, 35(3), 19(2014)
18 (杨铎, 基于Gauss-Newton法的空间管形拟合算法的研究, 大连大学学报, 35(3), 19(2014))
19 HAN Min, WANG Yanan. A Newton Algorithm for Nonlinear Regression, Chinese Journal of Computers, 33(5), 841(2010)
19 (韩 敏, 王亚楠, 求解非线性回归问题的Newton算法, 计算机学报, 33(5), 841(2010))
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
No Suggested Reading articles found!