|
|
Room Temperature Creep Behavior of Ti-6Al-4V Alloy |
XI Guoqiang1,2, QIU Jianke1,2,3( ), LEI Jiafeng1,2,3( ), MA Yingjie1,2,3, YANG Rui1,2,3 |
1.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3.Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China |
|
Cite this article:
XI Guoqiang, QIU Jianke, LEI Jiafeng, MA Yingjie, YANG Rui. Room Temperature Creep Behavior of Ti-6Al-4V Alloy. Chinese Journal of Materials Research, 2021, 35(12): 881-892.
|
Abstract The room temperature creep behavior of Ti-6Al-4V alloy and its effect on subsequent mechanical properties were investigated. The results show that all these factors, such as macro-texture, creep stress level and pre-plastic-strain, have a significant impact on the room temperature creep behavior of Ti-6Al-4V. With the increase of the <0001> peak pole density along the loading direction, the work hardening exponent increases, and the creep exponent becomes smaller, resulting in the better room temperature creep property of Ti-6Al-4V. Enough high stress is the prerequisite for room temperature creep. The obvious room temperature creep behavior can be observed only when the creep stress is not lower than 0.85σy, and the room temperature strain increases with the creep stress level. Pre-plastic-strain can suppress the subsequent room temperature creep of Ti-6Al-4V, no matter the pre-plastic-strain comes from the monotonic loading or from the creep behavior. The pre-plastic-strain can deteriorate the fatigue property of the alloy, although it can reduce subsequent creep strain.
|
Received: 26 February 2021
|
|
Fund: National Natural Science Foundation of China(51701219);National Key R & D Program of China(2016YFC0300600);Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)(311021013) |
About author: QIU Jianke, Tel: (024)83970131, E-mail: jkqiu@imr.ac.cn LEI Jiafeng, Tel: (024)23971958, E-mail: jflei@imr.ac.cn;
|
1 |
Peng J, Zhou C Y, Dai Q, et al. The temperature and stress dependent primary creep of CP-Ti at low and intermediate temperature [J]. Mater. Sci. Eng., 2014, 611A: 123
|
2 |
Yamada T, Kawabata K, Sato E, et al. Presences of primary creep in various phase metals and alloys at ambient temperature [J]. Mater. Sci. Eng., 2004, 387-389A: 719
|
3 |
Kameyama T, Matsunaga T, Sato E, et al. Suppression of ambient-temperature creep in CP-Ti by cold-rolling [J]. Mater. Sci. Eng., 2009, 510-511A: 364
|
4 |
Harrison W J, Whittaker M T, Lancaster R J. A model for time dependent strain accumulation and damage at low temperatures in Ti-6Al-4V [J]. Mater. Sci. Eng., 2013, 574A: 130
|
5 |
Odegard B C, Thompson A W. Low temperature creep of Ti-6Al-4V [J]. Metall. Trans., 1974, 5: 1207
|
6 |
Thompson A W, Odegard B C. The influence of microstructure on low temperature creep of Ti-5Al-2.5 Sn [J]. Metall. Trans., 1973, 4: 899
|
7 |
Neeraj T, Hou D H, Daehn G S, et al. Phenomenological and microstructural analysis of room temperature creep in titanium alloys [J]. Acta Mater., 2000, 48: 1225
|
8 |
Imam M A, Gilmore C M. Room temperature creep of Ti-6AI-4V [J]. Metall. Trans., 1979, 10A: 419
|
9 |
Miller W H, Chen R T, Starke E A. Microstructure, creep, and tensile deformation in Ti-6Al-2Nb-1Ta-0.8Mo [J]. Metall. Trans., 1987, 18A: 1451
|
10 |
Doraiswamy D, Ankem S. The effect of grain size and stability on ambient temperature tensile and creep deformation in metastable beta titanium alloys [J]. Acta Mater., 2003, 51: 1607
|
11 |
Ramesh A, Ankem S. The effect of grain size on the ambient temperature creep deformation behavior of a beta Ti-14.8 V alloy [J]. Metall. Mater. Trans., 2002, 33A: 1137
|
12 |
Tanaka H, Yamada T, Sato E, et al. Distinguishing the ambient-temperature creep region in a deformation mechanism map of annealed CP-Ti [J]. Scripta Mater., 2006, 54: 121
|
13 |
Kassner M E, Smith K. Low temperature creep plasticity [J]. J. Mater. Res. Technol., 2014, 3: 280
|
14 |
Xi G Q, Lei J F, Qiu J K, et al. A semi-quantitative explanation of the cold dwell effect in titanium alloys [J]. Mater. Des., 2020, 194: 108909
|
15 |
Zhang Z. Micromechanistic study of textured multiphase polycrystals for resisting cold dwell fatigue [J]. Acta Mater., 2018, 156: 254
|
16 |
Bache M R. A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions [J]. Int. J. Fatigue, 2003, 25: 1079
|
17 |
Qiu J K, Ma Y J, Lei J F, et al. A comparative study on dwell fatigue of Ti-6Al-2Sn-4Zr-xMo (x=2 to 6) alloys on a microstructure-normalized basis [J]. Metall. Mater. Trans., 2014, 45A: 6075
|
18 |
Sun C Q, Li Y Q, Xu K L, et al. Effects of intermittent loading time and stress ratio on dwell fatigue behavior of titanium alloy Ti-6Al-4V ELI used in deep-sea submersibles [J]. J. Mater. Sci. Technol., 2021, 77: 223
|
19 |
Evans W J, Gostelow C R. The effect of hold time on the fatigue properties of a β-processed titanium alloy [J]. Metall. Trans., 1979, 10A: 1837
|
20 |
Gerland M, Lefranc P, Doquet V, et al. Deformation and damage mechanisms in an α/β 6242 Ti alloy in fatigue, dwell-fatigue and creep at room temperature. Influence of internal hydrogen [J]. Mater. Sci. Eng., 2009, 507A: 132
|
21 |
Kassner M E, Kosaka Y, Hall J S. Low-cycle dwell-time fatigue in Ti-6242 [J]. Metall. Mater. Trans., 1999, 30A: 2383
|
22 |
Andenstedt H. Creep of titanium at room temperature [J]. Metal Prog., 1949, 56: 658
|
23 |
Ankem S, Wyatt Z W, Joost W. Advances in low-temperature (<0.25Tm) creep behavior of single and two-phase titanium alloys [J]. Proced. Eng., 2013, 55: 10
|
24 |
Aiyangar A K, Neuberger B W, Oberson P G, et al. The effects of stress level and grain size on the ambient temperature creep deformation behavior of an alpha Ti-1.6 wt pct V alloy [J]. Metall. Mater. Trans., 2005, 36A: 637
|
25 |
Jaworski A, Ankem P S. Influence of the second phase on the room-temperature tensile and creep deformation mechanisms of α-β titanium alloys, Part II: Creep deformation [J]. Metall. Mater. Trans., 2006, 37A: 2755
|
26 |
Wyatt Z W, Ankem S. Advances in low temperature (<0.25Tm) creep deformation mechanisms of alpha, alpha plus beta, and beta titanium alloys [A].Proceedings of the Ti-2011: Proceedings of the 12th World Conference on Titanium, Vol II [C]. 2012: 862
|
27 |
Zhang W D, Liu Y, Wu H, et al. Room temperature creep behavior of Ti-Nb-Ta-Zr-O alloy [J]. Mater. Charact., 2016, 118: 29
|
28 |
Hultgren C A, Ankem S, Greene C A. Time-dependent twinning during ambient temperature compression creep of alpha Ti-0. 4Mn alloy [J]. Metall. Mater. Trans., 1999, 30A: 1675
|
29 |
Wang Y N, Huang J C. Texture analysis in hexagonal materials [J]. Mater. Chem. Phys., 2003, 81: 11
|
30 |
Li W Y, Liu J R, Chen Z Y, et al. Effect of microstructure and texture on room temperature strength of Ti60 Ti-alloy plate [J]. Chin. J. Mater. Res., 2018, 32: 455
|
|
李文渊, 刘建荣, 陈志勇等. Ti60合金板材的室温强度与其显微组织和织构的关系 [J]. 材料研究学报, 2018, 32: 455
|
31 |
Hasija V, Ghosh S, Mills M J, et al. Deformation and creep modeling in polycrystalline Ti-6Al alloys [J]. Acta Mater., 2003, 51: 4533
|
32 |
Cuddihy M A, Stapleton A, Williams S, et al. On cold dwell facet fatigue in titanium alloy aero-engine components [J]. Int. J. Fatigue, 2017, 97: 177
|
33 |
Zheng Z B, Balint D S, Dunne F P E. Mechanistic basis of temperature-dependent dwell fatigue in titanium alloys [J]. J. Mech. Phys. Solids, 2017, 107: 185
|
34 |
Ma Y J, Xue Q, Wang H, et al. Deformation twinning in fatigue crack tip plastic zone of Ti-6Al-4V alloy with widmanstatten microstructure [J]. Mater. Charact., 2017, 132: 338
|
35 |
Ma Y J, Youssef S S, Feng X, et al. Fatigue crack tip plastic zone of α + β titanium alloy with widmanstatten microstructure [J]. J. Mater. Sci. Technol., 2018, 34: 2107
|
36 |
Dai Q, Zhou C Y, Peng J, et al. Room-temperature creep behavior on crack tip of commercially pure titanium [J]. Mater. Des., 2015, 85: 618
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|