Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (12): 881-892    DOI: 10.11901/1005.3093.2021.151
ARTICLES Current Issue | Archive | Adv Search |
Room Temperature Creep Behavior of Ti-6Al-4V Alloy
XI Guoqiang1,2, QIU Jianke1,2,3(), LEI Jiafeng1,2,3(), MA Yingjie1,2,3, YANG Rui1,2,3
1.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
Cite this article: 

XI Guoqiang, QIU Jianke, LEI Jiafeng, MA Yingjie, YANG Rui. Room Temperature Creep Behavior of Ti-6Al-4V Alloy. Chinese Journal of Materials Research, 2021, 35(12): 881-892.

Download:  HTML  PDF(6239KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The room temperature creep behavior of Ti-6Al-4V alloy and its effect on subsequent mechanical properties were investigated. The results show that all these factors, such as macro-texture, creep stress level and pre-plastic-strain, have a significant impact on the room temperature creep behavior of Ti-6Al-4V. With the increase of the <0001> peak pole density along the loading direction, the work hardening exponent increases, and the creep exponent becomes smaller, resulting in the better room temperature creep property of Ti-6Al-4V. Enough high stress is the prerequisite for room temperature creep. The obvious room temperature creep behavior can be observed only when the creep stress is not lower than 0.85σy, and the room temperature strain increases with the creep stress level. Pre-plastic-strain can suppress the subsequent room temperature creep of Ti-6Al-4V, no matter the pre-plastic-strain comes from the monotonic loading or from the creep behavior. The pre-plastic-strain can deteriorate the fatigue property of the alloy, although it can reduce subsequent creep strain.

Key words:  metallic materials      titanium alloy      Ti-6Al-4V      room temperature creep      macrotexture      pre-plastic-strain      mechanical properties     
Received:  26 February 2021     
ZTFLH:  TG146.2+3  
Fund: National Natural Science Foundation of China(51701219);National Key R & D Program of China(2016YFC0300600);Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)(311021013)
About author:  QIU Jianke, Tel: (024)83970131, E-mail: jkqiu@imr.ac.cn
LEI Jiafeng, Tel: (024)23971958, E-mail: jflei@imr.ac.cn;

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.151     OR     https://www.cjmr.org/EN/Y2021/V35/I12/881

Fig.1  Size of specimens (a) and sampling diagram (b) (unit: mm)
σy / MPaE / GPan<0001> peak pole density
ND 0.5H857111.20.023-
TD 0H1016129.50.0473.15
TD 0.25H979129.20.0382.08
TD 0.5H955128.80.0515
RD 0H905120.60.039-
RD 0.25H908123.10.0431.28
RD 0.5H917124.60.0462.08
Table 1  Compressive properties of the rolled Ti-6Al-4V plate (the number of parallel samples is 2)
Fig.2  Test waveforms of normal creep (a) and dwell fatigue (b)
Fig.3  Microstructures of the rolled Ti-6Al-4V plate at (a) 0H, 0.25H (b) and 0.5H (c)
Fig.4  (0001) pole figures of the rolled Ti-6Al-4V plate at 0H (a), 0.25H (b) and 0.5H (c)
Fig.5  Compressive stress-strain curves of the rolled Ti-6Al-4V plate at room temperature (a) true stress versus true strain and (b) true stress versus true plastic strain
Fig. 6  Compressive creep behavior of the rolled Ti-6Al-4V plate at creep stress of 0.95σy at room temperature (a) creep strain versus creep time and (b) creep strain rate versus creep time
Creep coefficient ACreep exponent b<0001> peak pole density
ND 0.5H0.820.17-
TD 0H0.870.133.15
TD 0.25H0.710.132.08
TD 0.5H0.490.125
RD 0H0.390.17-
RD 0.25H0.520.161.28
RD 0.5H0.390.162.08
Table 2  Fitting results of creep parameters during room temperature compressive creep of the rolled Ti-6Al-4V plate (the number of parallel samples is 2)
Fig.7  Relationships between material constants and <0001> peak pole density (a) and relationship between work hardening exponent n and creep exponent b (b)
Fig.8  Accumulation of plastic strain εp in the rolled Ti-6Al-4V plate during normal compressive creep and compressive dwell fatigue when σmax is 0.95σy at room temperature
Creep coefficient ACreep exponent b
ND 0.5H1.200.17
TD 0H1.460.09
RD 0H1.210.12
Table 3  Fitting results of creep parameters during room temperature compressive dwell fatigue of the rolled Ti-6Al-4V plate (the number of parallel samples is 2)
Fig. 9  Design of load-step-increasing creep experiment and the changes of creep strain with time under different stress levels in load-step-increasing creep experiment of the rolled Ti-6Al-4V plate at room temperature (a) loading diagram and (b) strain-stress curve of load-step-increasing creep experiment, (c) creep curves under different stress levels in one tensile load-step-increasing creep experiment, (d) creep curves under different stress levels in one compressive load-step-increasing creep experiment
Fig. 10  Effect of pre-plastic-strain on room temperature creep properties of the rolled Ti-6Al-4V plate (a) loading diagram of the load-step-decreasing creep experiment (in the red circle), (b) creep curves under different stress levels in one tensile load-step-decreasing creep experiment, (c) the effect of once existed high stress on creep, (d) the effect of pre-plastic-strain on creep
Fig.11  Typical strain-stress curves of Creep+HCF (a) and Tension+HCF (b)
σmaxyεp0/%Nf
HCF0.800462055
HCF0.800444641
C+HCF0.800.8052881
T+HCF0.800.9848913
HCF0.95033952
HCF0.95031077
T+HCF0.951.0022570
C+HCF0.951.3716987
Table 4  Effect of pre-plastic-strain on fatigue property of the rolled Ti-6Al-4V plate (R=0, f=10 Hz, triangular waveform, tensile stress)
1 Peng J, Zhou C Y, Dai Q, et al. The temperature and stress dependent primary creep of CP-Ti at low and intermediate temperature [J]. Mater. Sci. Eng., 2014, 611A: 123
2 Yamada T, Kawabata K, Sato E, et al. Presences of primary creep in various phase metals and alloys at ambient temperature [J]. Mater. Sci. Eng., 2004, 387-389A: 719
3 Kameyama T, Matsunaga T, Sato E, et al. Suppression of ambient-temperature creep in CP-Ti by cold-rolling [J]. Mater. Sci. Eng., 2009, 510-511A: 364
4 Harrison W J, Whittaker M T, Lancaster R J. A model for time dependent strain accumulation and damage at low temperatures in Ti-6Al-4V [J]. Mater. Sci. Eng., 2013, 574A: 130
5 Odegard B C, Thompson A W. Low temperature creep of Ti-6Al-4V [J]. Metall. Trans., 1974, 5: 1207
6 Thompson A W, Odegard B C. The influence of microstructure on low temperature creep of Ti-5Al-2.5 Sn [J]. Metall. Trans., 1973, 4: 899
7 Neeraj T, Hou D H, Daehn G S, et al. Phenomenological and microstructural analysis of room temperature creep in titanium alloys [J]. Acta Mater., 2000, 48: 1225
8 Imam M A, Gilmore C M. Room temperature creep of Ti-6AI-4V [J]. Metall. Trans., 1979, 10A: 419
9 Miller W H, Chen R T, Starke E A. Microstructure, creep, and tensile deformation in Ti-6Al-2Nb-1Ta-0.8Mo [J]. Metall. Trans., 1987, 18A: 1451
10 Doraiswamy D, Ankem S. The effect of grain size and stability on ambient temperature tensile and creep deformation in metastable beta titanium alloys [J]. Acta Mater., 2003, 51: 1607
11 Ramesh A, Ankem S. The effect of grain size on the ambient temperature creep deformation behavior of a beta Ti-14.8 V alloy [J]. Metall. Mater. Trans., 2002, 33A: 1137
12 Tanaka H, Yamada T, Sato E, et al. Distinguishing the ambient-temperature creep region in a deformation mechanism map of annealed CP-Ti [J]. Scripta Mater., 2006, 54: 121
13 Kassner M E, Smith K. Low temperature creep plasticity [J]. J. Mater. Res. Technol., 2014, 3: 280
14 Xi G Q, Lei J F, Qiu J K, et al. A semi-quantitative explanation of the cold dwell effect in titanium alloys [J]. Mater. Des., 2020, 194: 108909
15 Zhang Z. Micromechanistic study of textured multiphase polycrystals for resisting cold dwell fatigue [J]. Acta Mater., 2018, 156: 254
16 Bache M R. A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions [J]. Int. J. Fatigue, 2003, 25: 1079
17 Qiu J K, Ma Y J, Lei J F, et al. A comparative study on dwell fatigue of Ti-6Al-2Sn-4Zr-xMo (x=2 to 6) alloys on a microstructure-normalized basis [J]. Metall. Mater. Trans., 2014, 45A: 6075
18 Sun C Q, Li Y Q, Xu K L, et al. Effects of intermittent loading time and stress ratio on dwell fatigue behavior of titanium alloy Ti-6Al-4V ELI used in deep-sea submersibles [J]. J. Mater. Sci. Technol., 2021, 77: 223
19 Evans W J, Gostelow C R. The effect of hold time on the fatigue properties of a β-processed titanium alloy [J]. Metall. Trans., 1979, 10A: 1837
20 Gerland M, Lefranc P, Doquet V, et al. Deformation and damage mechanisms in an α/β 6242 Ti alloy in fatigue, dwell-fatigue and creep at room temperature. Influence of internal hydrogen [J]. Mater. Sci. Eng., 2009, 507A: 132
21 Kassner M E, Kosaka Y, Hall J S. Low-cycle dwell-time fatigue in Ti-6242 [J]. Metall. Mater. Trans., 1999, 30A: 2383
22 Andenstedt H. Creep of titanium at room temperature [J]. Metal Prog., 1949, 56: 658
23 Ankem S, Wyatt Z W, Joost W. Advances in low-temperature (<0.25Tm) creep behavior of single and two-phase titanium alloys [J]. Proced. Eng., 2013, 55: 10
24 Aiyangar A K, Neuberger B W, Oberson P G, et al. The effects of stress level and grain size on the ambient temperature creep deformation behavior of an alpha Ti-1.6 wt pct V alloy [J]. Metall. Mater. Trans., 2005, 36A: 637
25 Jaworski A, Ankem P S. Influence of the second phase on the room-temperature tensile and creep deformation mechanisms of α-β titanium alloys, Part II: Creep deformation [J]. Metall. Mater. Trans., 2006, 37A: 2755
26 Wyatt Z W, Ankem S. Advances in low temperature (<0.25Tm) creep deformation mechanisms of alpha, alpha plus beta, and beta titanium alloys [A].Proceedings of the Ti-2011: Proceedings of the 12th World Conference on Titanium, Vol II [C]. 2012: 862
27 Zhang W D, Liu Y, Wu H, et al. Room temperature creep behavior of Ti-Nb-Ta-Zr-O alloy [J]. Mater. Charact., 2016, 118: 29
28 Hultgren C A, Ankem S, Greene C A. Time-dependent twinning during ambient temperature compression creep of alpha Ti-0. 4Mn alloy [J]. Metall. Mater. Trans., 1999, 30A: 1675
29 Wang Y N, Huang J C. Texture analysis in hexagonal materials [J]. Mater. Chem. Phys., 2003, 81: 11
30 Li W Y, Liu J R, Chen Z Y, et al. Effect of microstructure and texture on room temperature strength of Ti60 Ti-alloy plate [J]. Chin. J. Mater. Res., 2018, 32: 455
李文渊, 刘建荣, 陈志勇等. Ti60合金板材的室温强度与其显微组织和织构的关系 [J]. 材料研究学报, 2018, 32: 455
31 Hasija V, Ghosh S, Mills M J, et al. Deformation and creep modeling in polycrystalline Ti-6Al alloys [J]. Acta Mater., 2003, 51: 4533
32 Cuddihy M A, Stapleton A, Williams S, et al. On cold dwell facet fatigue in titanium alloy aero-engine components [J]. Int. J. Fatigue, 2017, 97: 177
33 Zheng Z B, Balint D S, Dunne F P E. Mechanistic basis of temperature-dependent dwell fatigue in titanium alloys [J]. J. Mech. Phys. Solids, 2017, 107: 185
34 Ma Y J, Xue Q, Wang H, et al. Deformation twinning in fatigue crack tip plastic zone of Ti-6Al-4V alloy with widmanstatten microstructure [J]. Mater. Charact., 2017, 132: 338
35 Ma Y J, Youssef S S, Feng X, et al. Fatigue crack tip plastic zone of α + β titanium alloy with widmanstatten microstructure [J]. J. Mater. Sci. Technol., 2018, 34: 2107
36 Dai Q, Zhou C Y, Peng J, et al. Room-temperature creep behavior on crack tip of commercially pure titanium [J]. Mater. Des., 2015, 85: 618
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
No Suggested Reading articles found!