Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (9): 663-670    DOI: 10.11901/1005.3093.2014.564
Current Issue | Archive | Adv Search |
Adsorption Performance of Methylene Blue onto Nanoparticles of Carbon-Encapsulated Magnetic Nickel
Ranran LI1,Hao HUANG1,Xinglong DONG1,**(),Yonghui WANG1,Hongtao YU2,Xie QUAN2,Youngguan JUNG3
1. Key Laboratory of Materials Modification by Laser, Ion, and Electron Beam, Ministry of Education, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2. Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
3. Department of Mechanical Engineering, Kumoh National Institute of Technology, Gumi, South Korea
Cite this article: 

Ranran LI,Hao HUANG,Xinglong DONG,Yonghui WANG,Hongtao YU,Xie QUAN,Youngguan JUNG. Adsorption Performance of Methylene Blue onto Nanoparticles of Carbon-Encapsulated Magnetic Nickel. Chinese Journal of Materials Research, 2015, 29(9): 663-670.

Download:  HTML  PDF(2002KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nanoparticles of carbon encapsulated nickel (Ni@C NPs) were in-situ synthesized by direct current arc-discharge plasma method through evaporating pure Ni in methane atmosphere. Transmission electron microscopy observation revealed that the nanoparticles (Ni@C NPs) exhibited an encapsulation structure with Ni metal as core and carbon 3-5 nm in thickness as shell. The BET surface area of the prepared Ni@C NPs is 38.82 m2g-1 according to N2 adsorption-desorption isotherm. Surface modification with hydrogen peroxide was carried to graft oxygen-containing groups on carbon, which can improve the wettability and hydrophilicity of the Ni@C NPs. Then the effect of contact time, adsorption time and pH values on the adsorption of methylene blue was systematically investigated with the surface modified Ni@C NPs as adsorbent. The adsorption kinetics was analyzed with pseudo-first-order and pseudo-second-order models and the adsorption isotherm of methylene blue onto Ni@C NPs was fitted by Langmuir and Freundlich models. In addition, the result of recycling experiments for 5 cycles showed that a recovery rate 69.4% for the adsorbent could be reached. Furthermore, results of trial separation of Ni@C NPs by applied magnetic fields show that the magnetic field assisted separation technology is efficient means for the recycling and reuse of this adsorbent.

Key words:  composite      carbon coated nickel nanoparticles      adsorption      methylene blue      magnetic separation     
Received:  08 October 2014     
Fund: *Supported by National Basic Research Program of China No.2011CB936002 and National Natural Science Foundation of China Nos. 51271044, 51331006 & 51171033.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.564     OR     https://www.cjmr.org/EN/Y2015/V29/I9/663

Fig.1  HRTEM image (a) and XRD spectra (b) of Ni@C NPs
Fig.2  FT-IR spectra of Ni@CNPs before and after modification by H2O2
Fig.3  Zeta potential of Ni@C NPs as a function of solution pH before and after modification
Fig.4  Dispersityof Ni@C NPs before (A) and after (B) modification, (a) 2 min, (b) 5 min, (c) 10 min
Fig.5  Effect of initial concentration of MB on removal rate (a) and adsorption capability (b) at 30°C and pH=6.1
Fig.6  Effect of solution pH on adsorption at 30℃ and MB=20 mgL-1
Fig.7  Pseudo-first-order (a) and Pseudo-second-order (b) model at 30℃ and pH=6.1
Pseudo-first-order Pseudo-second-order
CMB /mgL-1 qe,exp /mgg-1 k1 /min-1 qe,cal /mgg-1 R 1 2 k2 /gmg-1min-1 qe,cal /mgg-1 R 2 2
10 9.7 0.020 3.8 0.623 0.017 9.9 0.998
20 16.4 0.026 7.1 0.780 0.011 16.8 0.999
30 19.7 0.030 18.6 0.953 0.002 22.1 0.994
Table 1  Coefficients of Pseudo-first and Pseudo-second-order adsorption kinetic models at 30℃ and pH=6.1
Fig.8  Langmuir (a) and Freundlich isotherm (b) of MB adsorption onto Ni@C NPs at 30℃ and pH=6.1
Langmuir Freundlich
KL/Lmg-1 qm/mgg-1 r L 2 RL KF/Lg-1 r F 2 n
1.74 20.6 0.992 0.019 12.48 0.999 4.99
Table 2  Adsorption isotherm parameters of MB adsorption onto Ni@C NPs at 30℃ and pH=6.1
Adsorbent Adsorption capacity/mgg-1 Ref.
Anaerobic granular sludge 45.01 [25]
Polyaniline nanotubes base/silica composite 10.31 [26]
Magnetic multi-wall carbon nanotube 11.89 [27]
Reduced graphene oxide-based hydrogels 7.85 [28]
Ni@C nanoparticles 20.6 This study
Table 3  Comparison of the capacity for some adsorbents with adsorption of methylene blue
Fig.9  Adsorption and desorption cycle performance of Ni@C NPs
1 W. Deligeer, Y. W. Gao, S. Asuha,Adsorption of methyl orange on mesoporous γ-Fe2O3/SiO2 nanocomposites, Applied Surface Science, 257, 3524(2011)
2 M. A. Rauf, M. A. Meetani, A. Khaleel, A. Ahmed,Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS, Chemical Engineering Journal, 157, 373(2010)
3 M. M. Alnuaimi, M. A. Rauf, S. S. Ashraf,Comparative decoloration study of Neutral Red by different oxidative processes, Dyes Pigm., 72, 367(2007)
4 J. H. Sun, S. P. Sun, G. L. Wang, L. P. Qiao,Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process, Dyes Pigm., 74, 647(2007)
5 FAN Yuxin,ZHOU Zengyan, Current situation and development prospect of textile dye wastewater treatment methods, Engineering and Technology, 9, 22(2002)
5 (樊毓新, 周增炎, 染料废水的处理方法现状与发展前景, 工程与技术, 9, 22(2002))
6 I. Uzun, F. Güzel,Adsorption of some heavy metal ions from aqueous solution by activated carbon and comparison of percent adsorption results of activated carbon with those of some other adsorbents, Turk J Chem., 24, 291(2000)
7 M. Ugǔrlu, A. Gürses, M. A??ky?ld?z,Comparison of textile dyeing effluent adsorption on commercial activated carbon and activated carbon prepared from olive stone by ZnCl2 activation, Microporous and Mesoporous Materials, 111, 228(2008)
8 P. K. Malik,Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36, Dyes and Pigments, 56, 239(2003)
9 D. M. Nevskaia, A. Santianes, V. Mu?oz, A. G. Ruíz. Interaction of aqueous solutions of phenol with commercial activated carbons: an adsorptionkinetic study, Carbon, 37, 1065(1999)
10 S. lijima,Helical microtubules of graphitic carbon, Nature, 354(6348), 56(1991)
11 H. H. Cho, K. Wepasnick, B. A. Smith, F. K. Bangash, D. H. Fairbrother, W. P. Ball,Sorption of aqueous Zn[II] and Cd[II] by multiwall carbon nanotubes: the relative roles of oxygen-containing functional groups and graphenic carbon, Langmuir, 26(2), 967(2010)
12 X. J. Peng, Y. H. Li, Z. K. Luan, Z. C. Di, H. Y. Wang, B. H. Tian, Z. P. Jia,Adsorption of 1, 2-dichlorobenzene from water to carbon nanotubes, Chemical Physics Letters, 376, 154(2003)
13 Z. Y. Zhang, J. L. Kong,Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution, Journal of Hazardous Materials, 193, 325(2011)
14 L. C. A. Oliveira, R. V. R. A. Rios, J. D. Fabris, V. Garg, K. Sapag, R. M. Lago,Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water, Carbon, 40, 2177(2002)
15 S. Qu, F. Huang, S. N. Yu, G. Chen, J. L. Kong,Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles, Journal of Hazardous Materials, 160, 643(2008)
16 X. L. Dong, Z. D. Zhang, S. R. Jin, W. M. Sun, X. G. Zhao, Z. J. Li, Y. C. Chuang,Characterization of Fe-Ni(C) nanocapsules synthesized by arc discharge in methane, J. Mater. Res., 14(5), 1782(1999)
17 X. F. Zhang, X. L. Dong, H. Huang, Y. Y. Liu, W. N. Wang, X. G. Zhu, B. Lv, J. P. Lei,Microwave absorption properties of the carbon-coated nickel nanocapsules, Appl. Phys. Lett., 89, 053115(2006)
18 X. L. Dong, Z. D. Zhang, S. R. Jin, W. M. Sun, Y. C. Chuang,Surface characteristic of ultrafine Ni particles, Nanostr. Mater., 10, 585(1998)
19 X. M. Yan, B. Y. Shi, J. J. Lu, C. H. Feng, D. S. Wang, H. X. Tang,Adsorption and desorption of atrazine on carbon nanotubes, Journal of Colloid and Interface Science, 321, 30(2008)
20 A. Ayla, A. ?avu?, Y. Bulut, Z. Baysal,?. Aytekin, Removal of methylene blue from aqueous solutions onto Bacillus subtilis: determination of kinetic and equilibrium parameters, Desalination and Water Treatment, 51, 7596(2013)
21 N. Kannan, M. M. Sundaram,Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study, Dyes and Pigments, 51, 25(2001)
22 D. Kavitha, C. Namasivayam,Experimental and kinetic studies on methylene blue adsorption by coir pith carbon, Bioresource Technology, 98, 14(2007)
23 I. Langmuir,The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40(9), 2221(1918)
24 Y. Qu, C. J. Zhang, F. Li, X. W. Bo, G. F. Liu, Q. Zhou,Equilibrium and kinetics study on the adsorption of perfluorooctanoic acid from aqueous solution onto powdered activated carbon, Journal of Hazardous Materials, 169, 146(2009)
25 F. F. Liu, S. X.Teng, R. H. Song, S. G. Wang,Adsorption of methylene blue on anaerobic granular sludge: Effect of functional groups, Desalination, 263, 11(2010)
26 M. M. Ayad, A. A. El-Nasr, J. Stejskal,Kinetics and isotherm studies of methylene blue adsorption onto polyaniline nanotubes base/silica composite, Journal of Industrial and Engineering Chemistry, 18, 1964(2012)
27 J. L. Gong, B. Wang, G. M. Zeng, C. P. Yang, C. G. Niu, Q. Y. Niu, W. J. Zhou,Yi Liang, Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent, Journal of Hazardous Materials, 164, 1517(2009)
28 J. N. Tiwari, K. Mahesh, N. H. Le, K. C. Kemp, R. Timilsina, R. N. Tiwari, K. S. Kim,Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions, Carbon, 56, 173(2013)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[4] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[5] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[6] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[7] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[8] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[9] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[10] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[11] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[12] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[13] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[14] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[15] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
No Suggested Reading articles found!