Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (8): 634-640    DOI: 10.11901/1005.3093.2014.760
Current Issue | Archive | Adv Search |
Preparation of Allotropic Composite Abrasives SSiO2/MSiO2 with Core/Shell Structure
Yang CHEN(),Yayun WANG,Jiawei QIN
School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
Cite this article: 

Yang CHEN,Yayun WANG,Jiawei QIN. Preparation of Allotropic Composite Abrasives SSiO2/MSiO2 with Core/Shell Structure. Chinese Journal of Materials Research, 2015, 29(8): 634-640.

Download:  HTML  PDF(3177KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Core/shell structured composite abrasives with solid-silica (SSiO2) cores and mesoporous-silica (MSiO2) shells were synthesized using tetraethylorthosilicate as silica source, ammonia solution as catalyst and cetyltrimethylammonium bromide as sacrificial template. The prepared abrasives were characterized by small angle XRD, FESEM, HRTEM, FTIR, TGA, nitrogen adsorption-desorption isotherm and the corresponding pore size distribution. The results show that the MSiO2 shells (70-80 nm in thickness) with radial pores are evenly coated on the external surfaces of the SSiO2 cores (210-230 nm).The BET surface area of the prepared abrasives is 558.2 m2/g. The mesochannels (2-3 nm in pore size) in the (MSiO2) shell are perpendicular to the surface of the SSiO2 core. The topography, roughness and profile curve of silicon wafers with a SiO2 surface film of ca 1200 nm were investigated by AFM before and after chemical-mechanical polishing in the presence of abrasives. By comparison with the conventional abrasives SSiO2, the composite abrasives are in favor of decreasing the surface roughness and increasing the material removal rate of the polished wafers. The MSiO2 shells of the prepared composite abrasives may be contribute to optimize the real interfacial contact between abrasives and wafer surface through certain mechanical and/or chemical effects.

Key words:  inorganic non-metallic materials      mesoporous silica      core-shell structure      composite abrasives      chemical mechanical polishing     
Received:  22 December 2014     
Fund: *Supported by National Natural Science Foundation of China Nos. 51205032 & 51405038 and the Natural Science

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.760     OR     https://www.cjmr.org/EN/Y2015/V29/I8/634

Fig.1  TEM images and size distribution curves of SSiO2microsphere samples
Fig.2  FTIR spectra (a) and TGA curve (b) of SSiO2/MSiO2 composite samples
Fig.3  FESEM images and size distribution curve of SSiO2/MSiO2 composites
Fig.4  TEM images of SSiO2/MSiO2 composites
Fig.5  Small-angle XRD pattern (a), nitrogen adsorption-desorption isotherm (b) and the corresponding pore size distribution curve (inset) of SSiO2/MSiO2 composite samples
Fig.6  Typical 2D-AFM images of the substrate surfaces (a) before CMP, (b) after CMP with SSiO2 abrasives and (c) after CMP with SSiO2/MSiO2 composite abrasives
Fig.7  AFM profile curves of the wafer surfaces before and after CMP with different abrasives
1 E. L. H. Thomas, G. W. Nelson, S. Mandal, J. S. Foord, O. A. Williams,Chemical mechanical polishing of thin film diamond, Carbon, 68, 473(2014)
2 Y. Zhou, G. Pan, X. Shi, L. Xu, C. Zou, H. Gong, G. Luo,XPS, UV-vis spectroscopy and AFM studies on removal mechanisms of Si-face SiC wafer chemical mechanical polishing (CMP), Applied Surface Science, 316, 643(2014)
3 F. Ilie,Models of nanoparticles movement, collision, and friction in chemical mechanical polishing (CMP), Journal of Nanoparticle Research, 14, 752(2012)
4 D. Guo, G. Xie, J. Luo,Mechanical properties of nanoparticles: basics and applications, Journal of Physics D: Applied Physics, 47, 013001(2014)
5 M. Fu, L. Wei, Y. Li, X. Zhou, S. Hao, Y. Li,Surface charge tuning of ceria particles by titanium doping: Towards significantly improved polishing performance, Solid State Science, 11(12), 2133(2009)
6 X. Feng, D. C. Sayle, Z. L. Wang, M. S. Paras, B. Santora, A. C. Sutorik, T. X. T. Sayle, Y. Yang, Y. Ding, X. Wang, Y. Her,Converting ceria polyhedral nanoparticles into single-crystal nanospheres, Science, 312(6), 1504(2006)
7 X. Zhao, R. Long, Y. Chen, Z. Chen,Synthesis, characterization of CeO2@SiO2 nanoparticles and their oxide CMP behavior, Microelectronic Engineering, 87(9), 1716(2010)
8 S. Armini, C. M. Whelan, K. Maex, J. L. Hernandez, M. Moinpourc,Composite polymer core-silica shell abrasive particles during oxide CMP: A defectivity study, Journal of the Electrochemical Society, 154(8), H667(2007)
9 S. Armini, J. De Messemaeker, C. M. Whelan, M. Moinpour, K. Maex,Composite polymer core-ceria shell abrasive particles during oxide CMP: A defectivity study, Journal of the Electrochemical Society, 155(9), H653(2008)
10 A. L. Chen, W. B. Mu, Y. Chen,Compressive elastic moduli and polishing performance of non-rigid core/shell structured PS/SiO2 composite abrasives evaluated by AFM, Applied Surface Science, 290, 433(2014)
11 CHEN Yang,LONG Renwei, CHEN Zhigang, DING Jianning, Synthesis of PS-core ceria-shell composite abrasive and its application in oxide CMP, Tribology, 30(1), 9(2010)
11 (陈 杨, 隆仁伟, 陈志刚, 丁建宁, 核-壳结构PS/CeO2复合磨料的制备及其氧化物化学机械抛光性能, 摩擦学学报, 30(1), 9(2010))
12 H. Lei, X. Wu, R. Chen,Preparation of porous alumina abrasives and their chemical mechanical polishing behavior, Thin Solid Films, 520(7), 2868(2012)
13 H. Lei, L. Jiang, R. Chen,Preparation of copper-incorporated mesoporous alumina abrasive and its CMP behavior on hard disk substrate, Powder Technology, 219, 99(2012)
14 H. Li, H. Lei, R. Chen,Preparation of porous Fe2O3/SiO2 nanocomposite abrasives and their chemical mechanical polishing behaviors on hard disk substrates, Thin Solid Films, 520(19), 6174(2012)
15 S. Chen, H. Lei, R. Chen,Preparation of porous alumina/ceria composite abrasive and its chemical mechanical polishing behavior, Journal of Vacuum Science & Technology B, 31, 021804(2013)
16 Y. Chen, Z. Li, N. Miao,Synergetic effect of organic cores and inorganic shells for core/shell structured composite abrasives for chemical mechanical planarization, Applied Surface Science, 314, 180(2014)
17 R. Chen, R. Jiang, H. Lei, M. Liang,Material removal mechanism during porous silica cluster impact on crystal silicon substrate studied by molecular dynamics simulation, Applied Surface Science, 264, 148(2013)
18 W. St?ber, A. Fink, E. Bohn,Controlled growth of monodisperse silica spheres in the micron size range, Journal of Colloid and Interface Science, 26, 62(1968)
19 S. F. Resende, E. H. M. Nunes, M. Houmard, W. L. Vasconcelos,Simple sol-gel process to obtain silica-coated anatase particles with enhanced TiO2-SiO2 interfacial area, Journal of Colloid and Interface Science, 433, 211(2014)
20 Z. Ran, Y. Sun, B. Chang, Q. Ren, W. Yang,Silica composite nanoparticles containing fluorescent solid core and mesoporous shell with different thickness as drug carrier, Journal of Colloid and Interface Science, 410, 94(2013)
21 M. Yang, G. Wang, Z. Yang,Synthesis of hollow spheres with mesoporous silica nanoparticles shell, Materials Chemistry and Physics, 2008, 111(1), 5(2008)
22 A. Mathew, S. Parambadath, S. S. Park, C. Ha,Hydrophobically modified spherical MCM-41 as nanovalve system for controlled drug delivery, Microporous and Mesoporous Materials, 200, 124(2014)
23 JI Yongjun,ZHANG Bin, ZHANG Kun, XU Le, PENG Honggen, WU Peng, Core/shell-structured ZSM-5@Mesoporous silica composites for shape-selective alkylation of toluene with methanol, Acta Chimica Sinica, 71, 371(2013)
23 (纪永军, 张 斌, 张 坤, 徐 乐, 彭洪根, 吴鹏,ZSM-5@Mesoporous Silica核壳复合结构分子筛的制备及其甲苯甲醇烷基化择形催化性能的研究, 化学学报, 71, 371(2013))
24 QI Juanjuan,XU Dongyao, CAI Qiang, ZHANG Wei, Preparation and characterization of radially porous silica and the core-shell structure, Chemical Journal of Chinese Universities, 33(4), 652(2012)
24 (齐娟娟, 徐东耀, 蔡 强, 张 伟, 放射孔二氧化硅及其核壳结构的制备与表征, 高等学校化学学报, 33(4), 652(2012))
25 L. H. He, O. C. Standard, T. T. Y. Huang, B. A. Latella, M. V. Swain,Mechanical behavior of porous hydroxyapatite, Acta Biomaterialia, 4(3), 577(2008)
26 P. Clément, S. Meille, J. Chevalier, C. Olagnon,Mechanical characterization of highly porous inorganic solids materials by instrumented micro-indentation, Acta Materialia, 61(18), 6649(2013)
27 D. Jauffrès, C. Yacou, M. Verdier, R. Dendievel, A. Ayral,Mechanical properties of hierarchical porous silica thin films: Experimental characterization by nanoindentation and finite element modeling, Microporous and Mesoporous Materials, 140(1-3), 120(2011)
28 V. Valtchev, L. Tosheva,Porous nanosized particles: Preparation, properties, and applications, Chemical Reviews, 113, 6734(2013)
29 S. Armini, I. U.Vakarelski, C. M. Whelan, K. Maex, K. Higashitani,Nanoscale indentation of polymer and composite polymer-silica core-shell submicrometer particles by atomic force microscopy, Langmuir, 23(4), 2007(2007)
30 Y. Chen, J. Lu, Z. Chen,Young's modulus of PS/CeO2 composite with core/shell structure microspheres measured using atomic force microscopy, J. Nanopart. Res., 14(2), 696(2012)
31 MENG Fanming,GAO Guixiang, WANG Xueli, Tribological performance of diatom shell with porous structure, Tribology, 34(5), 504(2014)
31 (孟凡明, 高贵响, 王雪丽, 硅藻壳孔状结构的摩擦学性能研究, 摩擦学学报, 34(5), 504(2014))
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!