Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (8): 627-633    DOI: 10.11901/1005.3093.2014.791
Current Issue | Archive | Adv Search |
In Vitro Biocompatibility of Co-Cr Alloys with Different Content of Copper
Xin ZHAO1,2,3,4,Yang CAO1,2,3,Zhun YIN1,2,3,Guangping ZHANG5,Yibin REN6,Desong ZHAN1,2,3,4,*()
1. Department of Prosthetics, School of Stomatology, China Medical University, Shenyang 110002, China
2. Central Laboratory, School of Stomatology, China Medical University, Shenyang 110002, China
3. Liaoning Institute of Dental Research, Shenyang 110002, China
4. Liaoning Province Ord Diseases Translational Medicine Research Center, Shenyang 110002, China
5. Department of Stomatology, Sheng Jing Hospital of China Medical University, Shenyang 110011, China
6. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Xin ZHAO,Yang CAO,Zhun YIN,Guangping ZHANG,Yibin REN,Desong ZHAN. In Vitro Biocompatibility of Co-Cr Alloys with Different Content of Copper. Chinese Journal of Materials Research, 2015, 29(8): 627-633.

Download:  HTML  PDF(5248KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The in vitro biocompatibility (i.e. the cell proliferation and apoptosis of L929 cells) of 4 cast dental alloys (CoCrMo+1%Cu, CoCrMo+2%Cu, CoCrMo+3%Cu and CoCrMo) were evaluated by CCK-8 and Annexing-V/PI double marking methods to provide a biology reference in the clinical application of prosthodontics. Results show that the in vitro biocompatibility of 4 alloys decreases according to following sequence: CoCrMo+1%Cu, CoCrMo+2%Cu, CoCrMo and CoCrMo+3%Cu. However, the cytotoxicity grades of the 4 alloys are all ranked in level one, implying they are good enough in vitro biocompatibility.

Key words:  metallic materials      copper-cobalt-chromium alloy      cytotoxicity      cellproliferation      apoptosis      biocompatibility     
Received:  31 December 2014     
About author:  *To whom correspondence should be addressed, Tel: (024)22894863, E-mail: zhandesong@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.791     OR     https://www.cjmr.org/EN/Y2015/V29/I8/627

No. Materials Main composition
A CoCrMo Co 56.04,Cr 22.83,Mo 1.09
B CoCrMo+1%Cu Co 60.21,Cr 26.62,Mo 6.15,Cu 1.24
C CoCrMo+2%Cu Co 64.65,Cr 27.25,Mo 6.00,Cu 2.10
D CoCrMo+3%Cu Co 62.23,Cr 28.62,Mo 6.27,Cu 2.88
Table 1  Main compositions of experimental alloys (mass fraction,%)
Fig.1  Cell morphology at each time points (A) CoCrMo group; (B) CoCrMo+1%Cu group; (C) CoCrMo+2%Cu group; (D) CoCrMo+3%Cu group; (E) negative control group; (F) positive control group
Group 24 h 48 h 72 h
RGR Level RGR Level RGR Level
CoCrMo 82.40% 1 81.04% 1 84.21% 1
CoCrMo+1%Cu 95.09% 1 95.30% 1 96.74% 1
CoCrMo+2%Cu 86.41% 1 91.09% 1 94.88% 1
CoCrMo+3%Cu 80.93% 1 80.04% 1 82.40% 1
Positive control group 37.15% 3 37.65% 3 37.09% 3
Table 2  The cell RGR and cytotoxicity grades of 4 kinds of alloys to L929
Groups 24 h 48 h 72 h
CoCrMo 0.4199 ± 0.0744 0.6862±0.0688 1.3627±0.0808
CoCrMo+1%Cu 0.4654 ± 0.0570 0.7850±0.1584 1.5469±0.0987b
CoCrMo+2%Cu 0.4343±0.0513 0.7558±0.0476 1.5196±0.1596
CoCrMo+3%Cu 0.4147±0.0379 0.6793±0.0396a 1.3360±0.0447a,c
Negative control group 0.4830±0.0840 0.8175±0.0784 1.5947±0.1676
Positive control group 0.2578±0.0318a,b 0.3856±0.0759a,b 0.6701±0.0775a,b
Table 3  Absorption value at different culture time points( x ? ±s , n=6)
Fig.3  Results of flow cytometry about early apoptosis after 48 h. (a) CoCrMo group; (b) CoCrMo+1%Cu group; (c) CoCrMo+2%Cu group; (d) CoCrMo+3%Cu group; (e) negative control group
Groups Early apoptosis rate P
CoCrMo 4.10±0.45 0.003a
CoCrMo+1%Cu 2.80±0.66 0.385a 0.027b
CoCrMo+2%Cu 3.33±0.38 0.039a 0.038b
CoCrMo+3%Cu 4.37±0.26 0.005a
0.427b
Negative control group 2.36±0.40 -
Table 4  Table 4 Early apoptosis rate of each group at 48 h( x ? ±s , n=3)
1 MA Qian,WU Fengming, Study of released metal ions of three kinds of dental casting alloys, Stomatology, 31(1), 33(2011)
1 (马 骞, 吴凤鸣, 3种烤瓷铸造合金的离子析出研究, 口腔医学, 31(1), 33(2011))
2 LU Dongmin,XIE Guangping, SHENG Meichun, WANG Zhonghua, The apoptosis of L-929 cells induced by four kinds of dental ceramic alloys, Shanxi Medical Journal, 38(2), 131(2009)
2 (卢东民, 谢广平, 盛美春, 王忠华, 4种烤瓷合金材料诱导L929细胞凋亡的研究, 陕西医学杂志, 38(2), 131(2009))
3 LI Hongyang,ZHONG Lifang, LIU Bing, CAI Hongdan, Influences of cobalt-chromium alloy versus silver-palladium alloy porcelain crown on periodontal tissues, Journal of Clinical Rehabilitative Tissue Engineering Research, 17(21), 3893(2013)
3 (李洪洋, 钟丽芳, 刘 兵, 蔡鸿丹, 钴铬合金及银钯合金烤瓷冠对牙周组织的影响, 中国组织工程研究, 17(21), 3893(2013))
4 XU Fang,Quantitative Changes of Microflora on Stress-bearing Areas and Satisfaction Relating to Different Metal Base of Partial Denture, Master Thesis(Wenzhou, East China University of Science and Technology, 2013)
4 (徐 芳, 不同金属材料义齿基托对承托区口腔黏膜微生物、义齿性口炎影响, 硕士学位论文(温州, 华东理工大学, 2013))
5 H. Chai, L. Guo, X. Wang, Y. Fu, J. Guan, L. Tan, L. Ren, K. Yang,Antibacterial effect of 317L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo, J. Mater. Sci. Mater. Med., 22(11), 2525(2011)
6 KANG Xiaoyan,WEI Fang, ZHAN Desong, Cytotoxicity evaluation of the nickel-chromium ceramic alloy made by oneself, Chinese Journal of Practical Stomatology, 1(8), 476(2008)
6 (康晓燕, 卫 芳, 战德松, 自制含钛镍铬烤瓷合金的细胞毒性评价, 中国实用口腔科杂志, 1(8), 476(2008))
7 T. Kishimoto, Y. Fukuzawa, M. Abe, M. Hashimoto, M. Ohno, M. Tada,Injury to cultured human vascular endothelial cells by copper (CuSO4) , Nihon. Eiseigaku. Zasshi., 47(5), 965(1992)
8 YU Tianhao,ZHANG Ning, ZHAN Desong, Evaluation of biocompatibilities of three dental alloys by flow cytometry, Chin. J. Mater. Res., 27(6), 652(2013)
8 (毓天昊, 张 宁, 战德松, 使用流式细胞仪评价3种牙科合金材料的生物相容性, 材料研究学报, 27(6), 652(2013))
9 L. C. Rusu, C. M. Bortun, G. Tanasie, A. C. Podariu, F. Baderca, C. Solovan, L. Ardelean,The cytotoxicity of dental alloys studied on cell culture, Rom. J. Morphol. Embryol., 55(1), 111(2014)
10 M. ?oli?, R. Rudolf, D. Stamenkovi?, I. An?el, D. Vu?evi?, M. Jenko, V. Lazi?, G. Lojen,Relationship between microstructure, cytotoxicity and corrosion properties of a Cu-Al-Ni shape memory alloy, Acta Biomater., 6(1), 308(2010)
11 R. K. Sani, B. M. Peyton, L. T. Brown,Copper-induced inhibition of growth of Desulfovibriodesulfuricans G20: assessment of its toxicity and correlation with those of zinc and lead , Appl. Environ. Microbiol., 67(10), 4765(2001)
12 H. Xie, Y. J. Kang,Role of copper in angiogenesis and its medicinal implications, Curr. Med. Chem., 16(10), 1304(2009)
13 S. Li, M. Wang, X. Chen, S. Li, J. L. Ling, H. Xie,Inhibition of osteogenic differentiation of mesenchymal stem cells by copper supplementation , Cell Proliferat., 47(1), 81(2014)
14 C. A. Grillo, M. L. Morales, M. V. Mirifico, L. D. M. M. Fernandez,Synergistic cytotoxic effects of ions released by zinc-aluminum bronze and the metallic salts on osteoblastic cells, J. Biomed. Mater. Res. A, 101(7), 2129(2013)
15 JIANG Lizhu,Induction of apoptosis in L929 murine fibroblasts in response to stainless steel which caps the magnetic attacbanent, Master Thesis(Shenyang, China Medical University, 2004)
15 (蒋立柱,磁性附着体外包裹不锈钢材料对小鼠成纤维细胞L-929凋亡的影响, 硕士学位论文(沈阳, 中国医科大学, 2004))
16 T. Keswani, S. Mitra, A. Bhattacharyya: Copper-induced immunotoxicity involves cell cycle arrest cell death in the liver, Environ. Toxicol., (2013)
17 S. Mitra, T. Keswani, M. Dey, S. Bhattacharya, S. Sarkar, S. Goswami, N. Ghosh, A. Dutta, A. Bhattacharyya: Copper-induced immunotoxicity involves cell cycle arrest cell death in the spleen thymus, Toxicology, 293(1-3), 78(2012)
18 R. G. Contreras, J. R. Vilchis, H. Sakagami, Y. Nakamura, Y. Nakamura, Y. Hibino, H. Nakajima, J. Shimada,Type of cell death induced by seven metals in cultured mouse osteoblastic cells, In Vivo, 24(4), 507(2010)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!