Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (6): 420-426    DOI: 10.11901/1005.3093.2013.896
Current Issue | Archive | Adv Search |
Prepared and Photoluminescence of SnO2 Nanoparticles
Yun WANG,Hong WANG,Guangai SUN,Xiping CHEN,Shifa WANG()
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900
Cite this article: 

Yun WANG,Hong WANG,Guangai SUN,Xiping CHEN,Shifa WANG. Prepared and Photoluminescence of SnO2 Nanoparticles. Chinese Journal of Materials Research, 2014, 28(6): 420-426.

Download:  HTML  PDF(2930KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

SnO2 nanoparticles were synthesized by a polyacrylamide gel technique. X-ray diffraction (XRD) analysis indicates that the as-synthesized SnO2 nanocrystallites consists merely of a rutile-type SnO2 with tetragonal crystallographic structure. Scanning electron microscope (SEM) observation shows that the prepared SnO2 nanoparticles are regularly rhombus in shape. The photo luminescent emission spectrum detected at λex= 326 nm showed four peaks located at 379, 417, 450 and 470 nm, the first having the strongest intensity. The emission spectra also show that an emission band around 740 nm was observed when the excitation wavelength is 230 nm. The forming and luminescence mechanisms of nano-SnO2 have been discussed based on the experimental results.

Key words:  inorganic non-metallic materials      polyacrylamide gel technique      SnO2      nanoparticles      luminescence mechanisms     
Received:  25 November 2013     
Fund: *Supported by National Natural Science Foundtion of China No. 11105128.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.896     OR     https://www.cjmr.org/EN/Y2014/V28/I6/420

Fig.1  Flow-chart for preparation of SnO2 nanoparticles via polyacrylamide gel route
Fig.2  Formation mechanism of SnO2 nanoparticle (a) complexation reaction, (b) cross-linking reaction (c) polymerization reaction
Fig.3  XRD spectra of the samples obtained by sintering the SnO2 xerogel powders at (a) 300℃, (b) 400℃, (c) 500℃, (d) 600℃, respectively
Samples (110) (101)
2θ/(o) FWHM d1 2θ/(o) FWHM d2
A 26.739 0.375 3.3312 34.038 0.384 2.6317
B 26.539 0.239 3.3558 33.82 0.263 2.6482
C 26.640 0.182 3.3434 33.92 0.191 2.6406
Table 1  The XRD results of SnO2 xerogel sintered at 400, 500 and 600℃
Fig.4  Lattice parameter of SnO2 samples as a function of sintering temperature
Fig.5  Observed, calculated, and difference plots from the structural refinement of SnO2
Fig.6  SEM images of different magnifications of SnO2 xerogel powders sintered at 400℃
Fig.7  FTIR spectra of the products obtained by sintering the SnO2 xerogel powders at 300 ℃
Fig.8  Excitation spectra (a) and emission spectra (b) of the xerogel powders calcined at different temperatures
Fig.9  Excitation spectra (a) and emission spectra (b) of the xerogel powders calcined at different temperatures
Fig.10  Relationship between luminescence intensity at 740 nm and calcined temperatures of the xerogel powders
1 Y. Wang, X. Jiang, Y. Xia,A solution-phase, precursor route to polycrystalline SnO2?nanowires that can be used for gas sensing under ambient conditions, Journal of the American Chemical?Society, 125(52), 16176(2003)
2 H. J. Snaith, C. Ducati,SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency, Nano Letter, 10(4), 1259(2010)
3 W. Zhou, R. Liu, Q. Wan, Q. Zhang, A. Pan, L. Guo, B. Zou,Bound exciton and optical properties of SnO2?one-dimensional nanostructures, The Journal of Physics Chemistry C, 113(5), 1719(2009)
4 J. H. He, T. H. Wu, C. L. Hsin, K. M. Li, L. J. Chen, Y. L. Chueh, L. J. Chou, Z. L. Wang. Beaklike SnO2?nanorods with strong photoluminescent field-emission properties, Small, 2(1), 116(2006)
5 WANG Lingjie,LIN Jinyang, YOU Yuxiang, YE Yun, YANG Zunxian, GUO Tailiang, Fabrication of back-gate field emission display with SnO2 nanowire, Chinese Journal of Vacuum Science of Technology, 32(3), 188(2012)
5 (王灵婕, 林金阳, 游玉香, 叶 芸, 杨尊先, 郭太良, 后栅结构SnO2场致发射显示器件的研制, 真空科学与技术学报, 32(3), 188(2012))
6 M. Gaidi, A. Hajjaji, R. Smirani, B. Bessais, M. El Khakani,Structure and photoluminescence of ultrathin films of?SnO2?nanoparticles synthesized by means of pulsed laser deposition, Journal of Applied Physics, 108, 063537(2010)
7 Y. C. Her, J. Y. Wu, Y. R. Lin, S. Y. Tsai,Low-temperature growth and blue luminescence of SnO2 nanoblades, Applied Physics Letters, 89(4), 043115(2006)
8 WANG Shifa,YANG Hua, Xian Tao, A novel visible-light-driven semiconductor photocatalyst: nano-yttrium manganite, Chinese Journal of Catalysis, 32(7), 1199(2011)
8 (王仕发, 杨 华, 县 涛, 新型半导体可见光催化剂纳米锰酸钇, 催化学报, 32(7), 1199(2011))
9 WANG Shifa,YANG Hua, Xian Tao, WEI Zhiqiang, MA Jinyuan, FENG Wangjun. Nano YMn2O5 visible-light-driven semiconductor photocatalyst, Journal of?Inorganic?Materials, 26(11), 1164(2011)
9 (王仕发, 杨 华, 县 涛, 魏智强, 马金元, 冯旺军, 纳米YMn2O5 半导体可见光催化剂, 无机材料学报, 26(11), 1164(2011))
10 WANG Shifa,YANG Hua, XIAN Tao, JIANG Jinlong, WEI Zhiqiang, FENG Youcai, LI Ruishan, FENG Wangjun, Preparation an characterization of YMnO3 nanoparticles, Journal of China Ceramics Society, 38(12), 2303(2010)
10 (王仕发, 杨 华, 县 涛, 姜金龙, 魏智强, 冯有才, 李瑞山, 冯旺军, YMnO3 纳米颗粒的制备与表征, 硅酸盐学报, 38(12), 2303(2010))
11 WANG Weipeng,YANG Hua, XIAN Tao, WEI Zhiqiang, MA Jinyuan, LI Ruishan, FENG Wangjun, Polyacrylamide gel synthesis of BaTiO3 nanoparticles and its photocatalytic properties for methyl red degradation, Chinese Journal of Catalysis, 33(2), 354(2012)
11 (王伟鹏, 杨 华, 县 涛, 魏智强, 马金元, 李瑞山, 冯旺军, BaTiO3 纳米颗粒的聚丙烯酰胺凝胶法合成及光催化降解甲基红性能, 催化学报, 33(2), 354(2012))
12 S. F. Wang, X. Xiang, G. A. Sun, X. L. Gao, B. Chen, Q. P. Ding, Z. J. Li, C. F. Zhang, X. T. Zu, Role of pH, organic additive, and chelating agent in gel synthesis and fluorescent properties of porous monolithic alumina, The Journal of Physical?Chemistry C, 117(20), 5067(2013)
13 S. F. Wang, C. F. Zhang, G. A. Sun, B. Chen, X. Xiang, H. Wang, L. M. Fang, Q. Tian, Q. P. Ding, X. T. Zu,Fabrication of a novel light emission material AlFeO3 by a modified polyacrylamide gel route and characterization of the material, Optical Materials, 36(2), 482(2013)
14 S. B. He, S. F. Wang, Q. P. Ding, X. D. Yuan, W. G. Zheng, X. Xiang, Z. J. Li, X. T. Zu,Role of chelating agent in chemical and fluorescent properties of SnO2 nanoparticles, Chinese Physics B, 22(5), 058102(2013)
15 M. Bhagwat, P. Shah, V. Ramaswamy,Synthesis of nanocrystalline SnO2 powder by amorphous citrate route, Materials Letters, 57(9-10)1604(2003)
16 O. O. Omatete, M. A. Janney, S. D. Numm,Gelcasting: from laboratory development toward industrial production, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6087
17 T. Xian, H. Yang, X. Shen, J. L. Jiang, Z.Q.Wei, W. J. Feng,Preparation of high-quality BiFeO3 nanopowders via a polyacrylamide gel route, Journal of Alloys and Compounds, 480(2), 889(2009)
18 K. B. McAuley,The chemistry and physics of polyacrylamide gel dosimeters: why they do and don't work, Journal of Physics: Conference Series, 3, 29(2004)
19 WEI Zhiqiang,XIA Tiandong, WANG Jun, WU Zhiguo, YAN Pengxun, Lattice expansion of Ni nanopowders. Acta Physica Sinica, 56(2), 1004(2007)
19 (魏智强, 夏天东, 王 君, 吴志国, 闫鹏勋, 纳米镍粉体的晶格膨胀, 物理学报, 56(2), 1004(2007))
20 RAO Qunli,LU Qing hua, BI Gang, WANG Ruibin, FAN Xiaolan, Characterization of nano-particle SiC by SAXS and its comparison with XRD, SEM, Journal of Shanghai Jiaotong University, 38(10), 1665(2004)
20 (饶群力, 路庆华, 毕 刚, 王瑞斌, 范小兰, 纳米SiC颗粒SAXS 表征及其与XRD、SEM的比较, 上海交通大学学报, 38(10), 1665(2004)
21 M. A. Farrukh, B. T. Heng, R. Adnan,Surfactant-controlled aqueous synthesis of SnO2 nanoparticles via the hydrothermal and conventional heating methods, Turkish Journal of Chemistry, 34(4), 537(2010)
22 A. Kar, M. A. Stroscio, M. Dutta, J. Kumari, M. Meyyappan,Observation of ultraviolet emission and effect of surface?states on the luminescence from tin oxide nanowires, Applied Physics Letters, 94, 101905(2009)
23 DING Cairong,WANG Bing, YANG Guowei, WANG Hezhou, High quality SnO2 crystals grown with catalyst-assistance and study on their photoluminescent spectroscopy, Acta Physica Sinica, 56(3), 1775(2007)
23 (丁才蓉, 王 冰, 杨国伟, 汪河洲, 催化剂对热蒸发法生长SnO2纳米晶体质量的影响及其发光光谱研究, 物理学报, 56(3), 1775(2007))
24 F. Gu, S. F. Wang, C. F. Song, M. K. Lv, Y. X. Qi, G. J. Zhou, D. Xu, D. R. Yuan,Synthesis and luminescence properties of SnO2?nanoparticles, Chemical Physics?Letters, 372(3-4), 451(2003)
25 J. Zhou, M. Zhang, J. Hong, Z. Yin,Raman spectroscopic and photoluminescence study of single-crystalline SnO2?nanowires, Solid State Communications, 138(5), 242(2006)
26 W. Bing, X. Ping,Growth mechanism and photoluminescence of the SnO2?nanotwists on thin film and the SnO2?short nanowires on nanorods, Chinese Physics B, 18(1), 324(2009)
27 X. T. Sun, L. Z. Yao, C. M. Mo, G. Shi, W. L. Cai, Y. M. Zhang,Intense photoluminescence and movement of optical absorption edge in alumina aerogels, Journal of Materials?Science?&?Technology, 16(3), 315(2000)
28 S. Sinha, R. Bhattacharya, S. Ray, I. Manna,Influence of deposition temperature on structure and morphology of nanostructured SnO2?films synthesized by pulsed laser deposition, Materials Letters, 65(2), 146(2011)
29 Z. Q. Yu, C. Li, N. Zhang,Size dependence of the luminescence spectra of nanocrystal alumina, Journal of Luminescence, 99(1), 29(2002)
30 K. Vanheusden, W. Warren, C. Seager, D. Tallant, J. Voigt, B. Gnade,Mechanisms behind green photoluminescence in ZnO phosphor powders, Journal of Applied Physics, 79(10), 7983(1996)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[9] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] LI Lingfang, YUAN Zhipeng, FAN Changling. Preparation of SnO2@Ti3C2Tx and Its Application in Lithium Ion Battery as Anode Material[J]. 材料研究学报, 2022, 36(8): 602-608.
[15] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
No Suggested Reading articles found!