Please wait a minute...
Chin J Mater Res  2011, Vol. 25 Issue (1): 7-12    DOI:
论文 Current Issue | Archive | Adv Search |
Homoepitaxial Growth and Photoluminescence Properties of Hierarchical In2O3 Nanostuctures
GUO Taibo, CHEN Yiqing, ZHANG Xinhua, LIU Lizhu
School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009
Cite this article: 

GUO Taibo CHEN Yiqing ZHANG Xinhua LIU Lizhu. Homoepitaxial Growth and Photoluminescence Properties of Hierarchical In2O3 Nanostuctures. Chin J Mater Res, 2011, 25(1): 7-12.

Download:  PDF(1037KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Large-scale hierarchical In2O3 nanostructures have been synthesized using vapor transport and condensation method without any catalyst, taking advantage of the self-assembly property and epitaxial vapor-solid (VS) growth mechanism, and were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results show that the In2O3 nanorods are single crystals with body-centered cubic (bcc) structure, epitaxially growing along  <100>  and <111> directions. Homoepitaxial interconnections can be observed at the branched junctions, and the growth process of the nanorods arrayed on the microcrystals is a combination of “secondary nucleation” and VS process. The room-temperature photoluminescence spectrum of In2O3 nanostructures exhibited ultraviolet emission at 386 nm and blue emission at 435 nm, which can be ascribed to the near-band-edge (NBE) emission and the possible recombination of a photo-excited hole with an electron occupying the singly ionized oxygen vacancies, respectively.
Key words:  inorganic non-metallic materials       In2O3        nanostructure       hierarchical       homoepitaxial     
Received:  26 October 2010     
ZTFLH: 

O472

 
Fund: 

Supported by National Natural Science Foundation of China No.20671027.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2011/V25/I1/7

1 C.M.Lieber, Z.L.Wang, Functional Nanowires, MRS Bull., 32, 99(2007)

2 K.G.Gopchandran, B.Joseph, J.T.Abraham, P.Koshy, V.K.Vaidyan, The preparation of transparent electrically conducting indium oxide films by reactive vacuum evaporation, Vacuum, 48, 547(1997)

3 B.X.Li, Y.Xie, M.Jing, G.X.Rong, Y.C.Tang, G.Z.Zhang, In2O3 hollow microspheres: Synthesis from designed In(OH)(3) precursors and applications in gas sensors and photocatalysis, Langmuir, 22, 9380(2006)

4 X.S.Peng, G.W.Meng, J.Zhang, X.F.Wang, Y.W.Wang, C.Z.Wang, L.D.Zhang, Synthesis and photoluminescence of single-crystalline In2O3 nanowires, J. Mater. Chem., 12, 1602(2002)

5 Z.W.Pan, Z.R.Dai, Z.L.Wang, Nanobelts of semiconducting oxides, Science, 291, 1947(2001)

6 Y.F.Hao, G.W.Meng, C.H.Ye, L.D.Zhang, Controlled synthesis of In2O3 octahedrons and nanowires, Cryst. Growth Des., 5, 1617(2005)

7 S.T.Jean, Y.C.Her, Growth mechanism and photoluminescence properties of In2O3 nanotowers, Cryst. Growth Des., 10, 2104(2010)

8 M.R.Shi, F.Xu, controllable synthesis of in2o3 nanocubes, truncated nanocubes, and symmetric multipods, J. Phys. Chem. C, 111, 16267(2007)

9 C.Li, D.H.Zhang, S.Han, Diameter-controlled growth of single- crystalline In2O3 nanowires and their electronic properties, Adv. Materials, 15, 143(2003)

10 K.Hiruma, M.Yazawa, T.Katsuyama, Growth and optical properties of nanometer-scale GaAs and InAs whiskers, Appl. Phys. Rev., 77, 447(1995)

11 Y.J.Zhang, N.L.Wang, S.P.Gao, R.R.He, S.Miao, J.Liu, J.Zhu, X.Zhang, A simple method to synthesize nanowires, Chem. Mater., 14, 3568(2002)

12 Z.Cui, G.W.Meng, W.D.Huang, G.Z.Wang, L.D.Zhang, Preparation and characterization of MgO nanorods, Mater. Res. Bull., 35, 1653(2000)

13 P.Yang, C.M.Lieber, Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites, J. Mater. Res., 12, 2981(1997)

14 Z.L.Wang, Transmission electron microscopy of shapecontrolled nanocrystals and their assemblies, J. Phys. Chem. B, 104, 1153(2000)

15 K.A.Dick, K.Deppert, M.W.Larsson, T.Martensson, W.Seifert, L.R.Wallenberg, L.Samuelson, Synthesis of branched ’nanotrees’ by controlled seeding of multiple branching events, Nat. Mater., 3, 380(2004)

16 D.Wang, F.Qian, C.Yang, Z.H.Zhong, C.M.Lieber, Rational growth of branched and hyperbranched nanowire Structures, Nano Lett., 4, 871(2004)

17 J.B.Hannon, S.Kodambaka, F.M.Ross, R.M.Tromp, The influence of the surface migration of gold on the growth of silicon nanowires, Nature, 440, 69(2006)

18 S.Kodambaka, J.B.Hannon, R.M.Tromp, F.M.Ross, Control of Si Nanowire growth by oxygen, Nano Lett., 6, 1292(2006)

19 P.X.Gao, Z.L.Wang, Self-assembled nanowire-nanoribbon junction arrays of ZnO, J. Phys. Chem., B, 106, 12653(2002)

20 Y.Ohhata, F.Shinoki, S.Yoshida, Optical properties of r.f. reactive sputtered tin-doped In2O3 films, Thin Solid Films, 59, 255(1979)

21 H.J.Zhou, W.P.Cai, L.D.Zhang, Photoluminescence of indium-oxide nanoparticles dispersed within pores of mesoporous silica, Appl. Phys. Lett., 75, 495(1999)

22 M.S.Lee, W.C.Choi, E.K.Kim, Characterization of the oxidized indium thin films with thermal oxidation, Thin Solid Films, 279, 1(1996)

23 H.Q.Cao, X.Q.Qiu, Y.Liang, Room-temperature ultraviolet emitting In2O3 nanowires. Appl. Phys. Lett., 83, 761(2003)

24 F.Zeng, X.Zhang, J.Wang, L.Wang, L.Zhang, Large-scale growth of In2O3 nanowires and their optical properties, Nanotechnology, 15, 596(2004)

25 L.Dai, X.L.Chen, J.K.Jlan, M.He, T.Zhou, B.Q.Hu, Fabrication and characterization of In2O3 nanowires, Appl. Phys. A, 75, 687(2002)

26 X.C.Wu, J.M.Hong, Z.J.Han, Y.R.Tao, Fabrication and photoluminescence characteristics of single crystalline In2O3 nanowires, Chem. Phy. Lett., 373, 28(2003)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!