Please wait a minute...
Chin J Mater Res  2011, Vol. 25 Issue (1): 13-18    DOI:
论文 Current Issue | Archive | Adv Search |
First--principles Study of Structure of Ammonia Borane
LIU Chaoren, HU Qingmiao, WANG Ping
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

LIU Chaoren HU Qingmiao WANG Ping. First--principles Study of Structure of Ammonia Borane. Chin J Mater Res, 2011, 25(1): 13-18.

Download:  PDF(843KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Two kinds of crystal structures (Pmn21 and P42cm) of (ammonia borane) are studied using first–principles plane wave pseudopotential method based on density functional theory in this paper. It was found that the Pmn21 structure is energetically more stable than the P42cm structure at 0 K. This agrees well with the experimental observation, that lower temperature phase is the Pmn21 structure whereas the room temperature phase is P42cm structure. The structure difference between Pmn21 and P42cm phases manifests itself mainly by the variation of intermolecular bond length whereas the intramolecular bond length remains almost unchanged. Electronic state of density was calculated to identify the bonding nature of ammonia borane. The XRD and FTIR patterns of the P42cm structure were calculated, results agree well with the experimental results of AB at room temperature.
Key words:  foundational discipline in materials science              ammonia borane        first–principles calculation       crystal structure, hydrogen storage material     
Received:  15 September 2010     
ZTFLH: 

TQ116

 
  TK91

 
Fund: 

Supported by National Key Basic Research and Development Program of China No.2010CB631305, and National Natural Science Foundation of China No.50801059.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2011/V25/I1/13

1 M.G.Schultz, T.Diehl, G.P.Brasseur, W.Zittel, Air pollution and climate forcing impacts of a global hydrogen economy, Science, 302(5645), 624(2003)

2 S.Satyapal, J.Petrovic, C.Read, G.Thomas, G.Ordaz, The U.S. department of energys national hydrogen storage project: progress towares meeting hydrogen–powered vehicle

requirements, Catalysis Today, 120(3–4), 246(2007)

3 T.B.Marder, Will we soon be fueling our automobiles with ammonia borane, Angew. Chem., 46(43), 8116(2007)

4 Edited by U.S. department of energy, Washington, DC,P.3.3.(2007) http://www1.eere.energy.gov/ hydrogenandfuelcells/mypp

5 L.Schlapbach , A.Zuttel, Hydrogen storage materials for mobile applications, Nature, 2414(6861), 353(2001)

6 W.Grochala, P.P.Edwards, Thermal decomposition of the non–interstitial hydrides for the storage and production of hydrogen, Chem. Rev., 104(3), 1283(2004)

7 A.M.Seayad, D.M.Antonelli, Recent advances in hydrogen storage in metal containing inorganic nanostructures and related materials, Advanced Materials, 16(9/10), 765(2004)

8 S.Orimo, Y.Nakamori, J.R.Eliseo, A.Zuttel, C.M.Jensen, Complex hydrides for hydrogen storage, Chem. Rev., 107(10), 4111 (2007)

9 P.Wang, X.D.Kang, Hydrogen–rich boron–containing materials for hydrogen storage, Dalton Transactions, 40, 5400(2008)

10 A.Gutowska, L.Li, Y.Shin, C.Wang, X.Li, J.Linehan, R.Smith, B.Kay, B.Schmid, W.Shaw, M.Gutowski, T.Autrey, Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane, Angew. Chem., 44, 23, 3578(2005)

11 TAO Zhanliang, PENG bo, LIANG Jing, CHENG Fangyi, CHEN Jun, Progress in research of high density hydrogen storage materials, Materials China, 28(7–8), 26(2009)

(陶占良, 彭博, 梁 静, 程方益, 陈 军, 高密度储氢材料研究进展, 中国材料进展,  28(7--8), 26(2009))

12 CHEN Jun, ZHU Min, Progress in research of hydrogen storage materials with high capacity, Materials China, 28(5), 2(2009)

(陈军, 朱敏, 高容量储氢材料的研究进展, 中国材料进展,  28(5), 2(2009))

13 F.H.Stephens, V.Pons, R.T.Baker, Ammonia–borane: the hydrogen source par excellence? Dalton Transactions, 2613(2007)

14 Z.Xiong, C.K.Yong, G.Wu, P.Chen, W.Shaw, A.Karkamkar, T.Autrey, M.O.Jones, S.R.Johnson, P.P.Edwards, W.I.F.David, High–capacity hydrogen storage in lithium and sodium amidoboranes, Nature Materials, 7, 138(2008)

15 J.Spielmann, S.Harder, Hydrogen elimination in bulky calcium amidoborane complexes: isolation of a calcium borylamide complex, J. Am. Chem. Soc., 131, 5064 (2009)

16 X.Yang, M.B.Hall, The catalytic dehydrogenation of ammonia–borane involving an unexpected hydrogen transfer to ligated carbine and subsequent carbon–hydrogen activation,

J. Am. Chem. Soc., 130, 1798(2008)

17 M.Ramzan, F.Silvearv, A.Blomqvist, R.H.Scheicher, S.Lebegue, R.Ahuja, Structural and energetic analysis of the hydrogen storage materials LiNH2BH3 and NaNH2BH3 from ab initio calculations, Phys. Rev. B, 79, 132102(2009)

18 H.Wu, W.Zhou, T.Yildirim, Alkali and alkaline–earth metal amidoboranes: structure, crystal chemistry, and hydrogen storage properties, J. Am. Chem. Soc., 130, 14834(2008)

19 R.J.Keaton, J.M.Blacquiere, R.T.Baker, Base metal catalyzed dehydrogenation of ammonia–borane for chemical hydrogen storage, J. Am. Chem. Soc., 129, 1844(2007)

20 A.Feaver, S.Sepehri, P.Shamberger, A.Stowe, T.Autrey, G.Z.Cao, Coherent carbon cryogel–ammonia borane nanocomposites for H2 storage, J. Phys. Ch. B, 111, 7469(2007)

21 M.E.Bluhm, M.G.Bradley, R.Butterick, U.Kusari, L.G.Sneddon, Amineborane–based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids, J. Am. Chem. Soc., 128, 7748(2006)

22 F.H.Stephens, R.T.Baker, M.H.Matus, D.J.Grant, D.A.Dixon, Acid initiation of ammonia–borane dehydrogenation for hydrogen storage, Angew. Chem., 46, 746(2007)

23 D.W.Himmelberger, C.W.Yoon, M.E.Bluhm, Base– promoted ammonia borane hydrogen–release, J. Am. Chem. Soc., 131(39), 14101(2009)

24 G.Wolf, J.C.van Miltenburg, U.Wolf, Thermochemical investigations on borazane(BH3–NH3) in the temperature range from 10 to 289 K, Thermochimica Acta, 317, 111(1998)

25 N.J.Hess, M.E.Bowden, V.M.Parvanov, C.Mundy, S.M.Kathmann, G.K.Schenter, T.Autrey, Spectroscopic studies of the phase transition in ammonia borane: raman spectroscopy of single crystal NH3BH3 as a function of temperature from 88 to 330 K, J. Chem. Phys., 128, 034508(2008)

26 N.J.Hess, G.K.Schenter, M.R.Hartman, L.L.Daemen, T.Proffen, S.M.Kathmann, C.J.Mundy, M.Hartl, D.J.Heldebrant, A.C.Stowe , T.Autrey, Neutron powder diffraction and molecular simulation study of the structural evolution of ammonia borane from 15 to 340K, J. Phys. Ch. A, 113, 5723 (2009)

27 J.B.Yang, J.Lamsal, Q.Cai, W.J.James, W.B.Yelon, Structural evolution of ammonia borane for hydrogen storage, Appl. Phys. L, 92, 091916(2008)

28 YANG Jinbo, Yelon W B, James W J, Neutron diffraction studies of novel complex hydrides, Materials China, 28(12), 15(2009)

(杨金波, Yelon W B, James W J, 新型储氢材料的中子衍射研究, 中国材料进展,  28(12), 15(2009))

29 W.T.Klooster, T.F.Koetzle, P.E.M.Siegbahn, T.B.Richardson, R.H.Crabtree, Study of the N–H–H–B dihydrogen bond including the crystal structure of BHNH by neutron diffraction, J. Am. Chem. Soc., 121, 6337(1999)

30 Y.Lin, W.L.Mao , V.Drozd , J.Chem , L.L.Daemen, Raman spectroscopy study of ammonia borane at high pressure, J. Chem. Phys., 109, 234509(2008)

31 C.F.Hoon, E.C.Reynhardt, Molecular dynamics and structures of amine boranes of the type R3N.BH3. X–ray investigation of H3NBH3 at 295 K and 110 K, Journal of Physics C: Solid State Physics, 16, 32, 6129(1983)

32 E.C.Reynhardt, C.F.Hoon, Molecular dynamics and structures of amine boranes of the type R3N.BH3.NMR investigation of H3NBH3, Journal of Physics C: Solid State Physics, 16, 32, 6137(1983)

33 M.E.Bowden, G.J.Gainsford, W.T.Robinson, Room temperature structure of ammonia borane, Aust. J. Chem., 60, 149(2007)

34 C.Miranda, G.Ceder, Ab initio investigation of ammonia– borane complexes for hydrogen storage, J. Chem. Phys., 126(18), 184703(2007)

35 V.M.Parvanov, G.K.Schenter, N.J.Hess, L.L.Daemen, M.Hartl, A.C.Stowe, D.M.Camaioni, T.Autrey, Materials for hydrogen storage: structure and hynamics of borane ammonia complex, Dalton Transactions, 2008, 4514 

36 C.A.Morrison , M.M.Siddick, Dihydrogen bonds in solid BH3NH3, Angew. Chem., 43, 4780(2004)

37 G.Kress, J.Furthmuller, Efficient iterative schemes for ab initio total–energy calculations using a plane–wave basis set, Phys. Rev. B, 54, 11169(1996)

38 G.Kress, J.Furthmuller, Efficiency of ab–initio total energy calculations for metals and semiconductors using a plane–wave basis set, Comput. Mater. Sci., 6, 15(1996)

39 D.West, S.Limpijumnong, S.B.Zhang, Band structures and native defects of ammonia borane, Phys. Rev. B, 80, 064109(2009)

40 S.M.Lee, X.D.Kang, P.Wang, H.M.Cheng, Y.H.Lee, A comparative study of the structural, electronic, and vibrational properties of NH3BH3 and LiNH2BH3: theory and experiment, Chem. Phys. Chem., 10(11), 1825(2009)
[1] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[4] SUN Yi, HAN Tongwei, CAO Shumin, LUO Mengyu. Tensile Properties of Fluorinated Penta-Graphene[J]. 材料研究学报, 2022, 36(2): 147-151.
[5] LU Xiaoqing,ZHANG Quande,WEI Shuxian. Theoretical Study on Photoelectric Characteristic of A-π-D-π-A Indole-based Dye Sensitizers[J]. 材料研究学报, 2020, 34(1): 50-56.
[6] Xuexiong LI,Dongsheng XU,Rui YANG. CPFEM Study of High Temperature Tensile Behavior of Duplex Titanium Alloy[J]. 材料研究学报, 2019, 33(4): 241-253.
[7] Li HUANG. Stability and Heat storage Capacity of Phase Change Emulsion Paraffin/Water[J]. 材料研究学报, 2017, 31(10): 789-795.
[8] Liang ZHU,Jing WANG,Xiaohui LI,Hongbo SUO,Yiliang ZHANG. R-S-N Mathematical Model Based on TC18 by BW High Cycle Fatigue Test Data[J]. 材料研究学报, 2015, 29(9): 714-720.
[9] Yang CHEN,Cheng QIAN,Zhitang SONG,Guoquan MIN. Measurement of Compressive Young’s Modulus of Polymer Particles Using Atomic Force Microscopy[J]. 材料研究学报, 2014, 28(7): 509-514.
[10] Guiqin YU,Jianjun LIU,Yongmin LIANG. Synthesis and Tribological Performance of Guanidinium Ionic Liquids as Lubricants for Steel /Steel Contacts[J]. 材料研究学报, 2014, 28(6): 448-454.
[11] Xiaogang WANG,Yueyi LI,Hailan WANG,Cunlong ZHOU,Qinxue HUANG. Numerical Modeling for Roller Leveling Process of Bimetal-Plate[J]. 材料研究学报, 2014, 28(4): 308-313.
[12] Wu YAO,Mengxue WU,Yongqi WEI. Determination of Reaction Degree of Silica Fume and Fly Ash in a Cement - silica fume - fly ash Ternary Cementitious System[J]. 材料研究学报, 2014, 28(3): 197-203.
[13] Ruwu WANG,Jing LIU,Zhanghua GAN,Chun ZENG,Fengquan ZHANG. Crystallization Kinetics of Amorphous Alloys Fe73.5Si13.5-xGexB9Cu1Nb3(x=3, 6)[J]. 材料研究学报, 2014, 28(3): 204-210.
[14] Lei LI,Ke QIN,Haitao ZHANG,Zhihao ZHAO,Qingfeng ZHU,Yubo ZUO,Jianzhong CUI. Crystallographic Features of a Solidified Hypoeutectic Zn-4.45%Al Alloy[J]. 材料研究学报, 2014, 28(2): 126-132.
[15] Yanen WANG,Qinghua WEI,Mingming YANG,Shengmin WEI. Molecular Dynamics Simulation of Mechanical Properties and Surface Interaction for HA/NBCA[J]. 材料研究学报, 2014, 28(2): 133-138.
No Suggested Reading articles found!