Please wait a minute...
Chin J Mater Res  2010, Vol. 24 Issue (4): 373-377    DOI:
论文 Current Issue | Archive | Adv Search |
Purification Behavior of Impurity Aluminum in Multicrystalline Silicon by Vacuum Induction Melting and Directional Solidification Method
JI Ming1,2,  DONG Wei1,2,  TAN Yi1,2,  SUN Shihai1,2,  LI Guobin1
1.Key Laboratory for Solar Energy Photovoltaic of Liaoning Province, Dalian 116204
2.School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
Cite this article: 

JI Ming DONG Wei TAN Yi SUN Shihai LI Guobin. Purification Behavior of Impurity Aluminum in Multicrystalline Silicon by Vacuum Induction Melting and Directional Solidification Method. Chin J Mater Res, 2010, 24(4): 373-377.

Download:  PDF(801KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Purification mechanism of impurity aluminum in multicrystalline silicon ingot made from metallurgical-grade silicon was investigated by composition analysis and theoretical analysis of vacuum induction melting and directional solidification. The results showed that the content of impurity aluminum was significantly decreased due to the obviously evaporation in the stage of thermal insulation (T ≥1723 K). The segregation of impurity aluminum plays an important role in the distribution of aluminum in subsequent directional solidification process, but a little amount aluminum evaporation still happened. A new theoretical model including segregation phenomenon and evaporation mechanism was developed to simulate the distribution of aluminum in multicrystalline silicon. The result of simulation was well consistent with the measured distribution of aluminum in the obtained ingot.

Key words:  inorganic non-metallic materials        multicrystalline silicon        vacuum induction melting        directional solidification        aluminum     
Received:  15 April 2010     
ZTFLH: 

TF1

 
Fund: 

Supported by the Major Project of Science and Technology of Liaoning Province No. 2006222007.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2010/V24/I4/373

1 S.Rousseau, M.Benmansour, D.Morvan, J.Amouroux, Purification of MG silicon by thermal plasma process coupled to DC bias of the liquid bath, Solar Energy Materials & Solar Cells, 91(20), 1906(2007)
2 T.Ikeda, M.Maeda, Purification of metallurgical silicon for solar-grade silicon by electron beam button melting, ISIJ  nternational, 32(5), 635(1992)
3 A.F.B.Braga, S.P.Moreira, P.R.Zampiieri, J.M.G.Bacchin, P.R.Mei, New processes for the production of solar grade polycrystalline silicon: A review, Solar Energy Materials & Solar Cells, 92(4), 418(2008)
4 T.Yoshikawa, K.Morita, Refining of silicon during its solidification from a Si–Al melt, Journal of Crystal Growth, 311(3), 776(2009)
5 LUO Qiwen, CHEN Hongyu, TANG Mingcheng, Development of metallurgy purification technology for solar grade silicon, Chinese Journal of nonferrous metals, 2(1), 12(2008)
(罗绮雯, 陈红雨, 唐明成, 冶金法提纯太阳能级硅材料的研究进展, 中国有色冶金,  2(1), 12(2008)))
6 C.P.Khattak, D.B.Joyce, F.Schmid, Production of solargrade silicon by refining of liquid metallurgical-grade silicon, The American Institute of Physics, 462(1), 731(1999)
7 ZHANG Weina, Electrical properties of multicrystalline metallurgy silicon, Master}s thesis, Dalian university of technology(2007))
(张伟娜, 冶金多晶硅的电学性能研究, 硕士学位论文, 大连理工大学(2007)))
8 WU Yaping, Research on metallurgical processing of multicyrstalline silicon of Solar cells, Master's thesis, Dalian university of technology (2007)
(吴亚萍, 太阳能级多晶硅的冶金制备研究, 硕士学位论文, 大连理工大学(2006)))
9 K.Moritaa, T.Miki, Thermodynamics of solar-gradesilicon refining, Intermetallics, 11(11–12), 1111(2003)
10 P.S.Ravishankar, J.P.Dismukes, Influence of ACRT on interface stability and particle trapping behavior in directional solidification of silicon, Journal of Crystal Growth, 71(3), 579(1985)
11 E.Ozberk, R.I.L.Guthriea, A kinetic model for the vacuum refining of inductively stirred copper melts, Metallurgical Transactions B, 17(1), 87(1986)
12 T.Miki, K.Morita, N.Sano, Thermodynamic properties of aluminum, magnesium and calcium in molten silicon, Metallurgical and Materials Transactions B, 29(5), 1043(1998)
13 K.Suzuki, K.Sakaguchi, T.Nakagiri, N.Sano, Gaseous removal of phosphorus and boron from molten silicon, J. Japan Inst. Metals, 54(2), 161(1990))
14 N.Yuge, K.Hanazawa, Y.Kato, Removal of metal impurities in moten silicon by directional solidification with electron beam heating, Materials Transactions, 45(3), 850(2004)
15 D.Macdonald, A.Cuevas, A.Kinomura, Y.Nakano, L.J.Geerligs, Transition-metal profiles in a multicrystalline silicon ingot, Journal of Applied Physics, 97(3), 33523(2005)
16 Z.Q.Xi, J.Tang, H. Deng, D.R.Yang, D.L.Que, A model for distribution of oxygen in multicrystalline silicon ingot  grown by directional solidification, Solar Energy Materials & Solar Cells, 91(18), 1688(2007)

[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!