Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (5): 377-388    DOI: 10.11901/1005.3093.2024.262
ARTICLES Current Issue | Archive | Adv Search |
Self-healing Performance of a Novel Coating Composed of Polydimethylsiloxane Matrix and Surface Modified Halloysite Nanotubes Filler
BAO Jihua1, WU Peng1, ZHANG Haoran1, CHU Guiwen1, SONG Liying1(), JIANG Quantong2, MA Fubin2
1.Shandong University of Science and Technology, Qingdao 266590, China
2.Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
Cite this article: 

BAO Jihua, WU Peng, ZHANG Haoran, CHU Guiwen, SONG Liying, JIANG Quantong, MA Fubin. Self-healing Performance of a Novel Coating Composed of Polydimethylsiloxane Matrix and Surface Modified Halloysite Nanotubes Filler. Chinese Journal of Materials Research, 2025, 39(5): 377-388.

Download:  HTML  PDF(11907KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Herein, halloysite nanotubes (HNTs) as typical micro-nano carrier were alkali etched to expand their aperture, then, on their surface 2-mercaptobenzothiazole (MBT) was deposited, and finally chitosan-polyethylene glycol copolymer (CP) was coated as top surface layer, thus a new filler of surface modified HNTs was made. Next, a novel self-healing coating (CP-HNTs-MBT) is developed with polydimethylsiloxane (PDMS) as matrix and the surface modified HNTs as filler etc., and then the coating is applied on Cu substrate. The structure and composition of the filler and the corrosion performance, especially its re-healing capacity in 3.5% NaCl solution of the coating are assessed via Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), UV absorption spectroscopy, immersion test, and Kelvin probe etc. Results indicate that MBT is successfully loaded onto HNTs, achieving a loading capacity of 12% by mass. The results of SEM, EIS, Kelvin probe, and UV absorption spectroscopy confirm the excellent self-healing performance of the CP-HNTs-MBT coating, which can still show significant self-healing ability, even when it is used for second time. It follows that the CP-HNTs-MBT coating exhibits strong corrosion resistance, with the ability to maintain self-healing ability for multiple cycle usage, thereby providing effective protection for metal materials.

Key words:  organic polymer materials      chitosan      polyethylene glycol      alkaline etched halloysite nanotubes      2-mercaptobenzothiazole      cyclic self-healing coating     
Received:  12 June 2024     
ZTFLH:  TG176  
Fund: General Program of Natural Science Foundation of Shandong Province(ZR2021ME087)
Corresponding Authors:  SONG Liying, Tel: (0532)86081281, E-mail: songliying0520@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.262     OR     https://www.cjmr.org/EN/Y2025/V39/I5/377

Fig.1  Preparation steps of CP-HNTs-MBT coatings
Fig.2  Fourier transform infrared spectroscopy of HNT, HNTs, MBT and HNTs-MBT
Fig.3  Fourier transform infrared spectroscopy of CS, PEG, HNTs-MBT and CP- HNTs-MBT
Fig.4  TGA of HNTs, MBT, HNTs-MBT and CP-HNTs-MBT
Fig.5  SEM images of HNT (a), HNTs (b), HNTs-MBT (c), CP-HNTs-MBT (d) and TEM images of HNTs (e), CP-HNTs-MBT (f)
Fig.6  Impedance modulus of scratches on CP-HNTs-MBT-coated (a) and blank-coated (b) surfaces in a 3.5% NaCl (mass fraction) solution (f = 0.01 Hz)
Fig.7  After immersing in a 3.5% NaCl solution for 0, 8, 16, 24, and 30 d, Nyquist (a, c) and Bode (b, d) plots of scratches on copper coated with CP-HNTs-MBT (a, b) and blank-coated surfaces (c, d)
Fig.8  Equivalent circuit model
t / dRs / Ω·cm2Y0-Qc / F·cm-2s nnRf / Ω·cm2Cct / F·cm-2Rct / Ω·cm2Rt / Ω·cm2K / %
076.365.871 × 10-60.60353.330 × 1034.219 × 10-85.663 × 1055.696 × 1054.929
899.824.704 × 10-60.67523.232 × 1053.915 × 10-89.402 × 1051.263 × 1064.665
1684.425.531 × 10-60.72845.964 × 1031.038 × 10-51.130 × 1051.190 × 1053.765
2491.54.767 × 10-60.73289.727 × 1041.826 × 10-75.308 × 1056.281 × 1053.000
3091.255.590 × 10-60.71676.547 × 1032.015 × 10-73.655 × 1053.720 × 1053.608
Table 1  Fitting impedance data (0 d, 8 d, 16 d, 24 d, 30 d) of coating with CP-HNTs-MBT
t / dRs / Ω·cm2Y0-Qc / F·cm-2s nnRf / Ω·cm2Cct / F·cm-2Rct / Ω·cm2Rt / Ω·cm2K / %
02.009 × 1027.707 × 10-50.51141.38 × 1034.963 × 10-67.875 × 1048.013 × 1041.118
82.058 × 1023.133 × 10-40.52787.377 × 1021.015 × 10-42.167 × 1042.241 × 1041.500
162.664 × 1024.185 × 10-40.53075.672 × 1023.311 × 10-46.730 × 1037.297 × 1031.039
243.630 × 1025.704 × 10-40.53584.005 × 1029.430 × 10-45.406 × 1035.806 × 1031.008
303.330 × 1025.448 × 10-40.52253.668 × 1028.151 × 10-41.609 × 1031.976 × 1031.022
Table 2  Fitting impedance data (0 d, 8 d, 16 d, 24 d, 30 d) of coating without CP-HNTs-MBT
Fig.9  SKP test of coating scratch area with CP-HNTs-MBT immersed in 3.5% NaCl solution for 0 d (a), 4 d (b), 6 d (c), 8 d (d)
Fig.10  SEM image and EDS data of coating scratch area with CP-HNTs-MBT immersed in 3.5% NaCl solution for 0 d (a) and 8 d (b)
Fig.11  SVET test of coating scratch area with CP-HNTs-MBT immersed in 3.5% NaCl solution for 0 d (a), 4 d (b), 6 d (c), 8 d (d)
Fig.12  MBT standard concentration curve of (a) pH = 5 and (b) pH = 7
Fig.13  Relationship between MBT release and time under the condition of pH = 5 and pH = 7
Fig.14  UV spectra of (a) pH = 5 and (b) pH = 7 MBT at different release times
Fig.15  Schematic diagram of corrosion mechanism and self-healing mechanism
1 Montemor M F. Functional and smart coatings for corrosion protection: A review of recent advances [J]. Surf. Coat. Technol., 2014, 258(15): 17
2 Dong S G, Zhao B, Lin C J, et al. Corrosion behavior of epoxy/zinc duplex coated rebar embedded in concrete in ocean environment [J]. Constr. Build. Mater., 2011, 28(1): 72
3 Cui M J, Ren S M, Xue Q J, et al. Carbon dots as new eco-friendly and effective corrosion inhibitor [J]. J. Alloy. Compd., 2017, 726(5): 680
4 Rakanta E, Zafeiropoulou T, Batis G. Corrosion protection of steel with DMEA-based organic inhibitor [J]. Constr. Build. Mater., 2013, 44:507
5 Gupta R K, Malviya M, Verma C, et al. Pyridine-based functionalized graphene oxides as a new class of corrosion inhibitors for mild steel: an experimental and DFT approach [J]. RSC Adv., 2017, 7(62): 39063
6 Dong S G, Zhao B, Lin C J, et al. Corrosion behavior of epoxy/zinc duplex coated rebar embedded in concrete in ocean environment [J]. Constr. Build. Mater., 2012, 28(1): 72
7 Wang X H, Chen B, Tang P. Experimental and analytical study on bond strength of normal uncoated and epoxy-coated reinforcing bars [J]. Constr. Build. Mater., 2018, 189: 612
8 Wang J S, Farzad S, Yang H, Huining X. Smart lignin-based polyurethane conjugated with corrosion inhibitor as bio-based anticorrosive sublayer coating [J]. Ind. Crop. Prod., 2022, 188(PB): 115719
9 Feng L J, Xing R W, Wei Q Y, et al. Improvement in corrosion protective performance of polyacrylate coating based on corrosion inhibitors microcapsules [J]. Mater. Lett., 2023, 331(15): 133514
10 Abdullayev E, Lvov Y. Halloysite clay nanotubes for controlled release of protective agents [J]. J. Nanosci. Nanotechnol., 2011, 11(11): 10007
pmid: 22413340
11 Wei W B, Minullina R, Abdullayev E, et al. Enhanced efficiency of antiseptics with sustained release from clay nanotubes [J]. RSC Adv., 2014, 4(1): 488
12 Patel S, Jammalamadaka U, Sun L, et al. Sustained release of antibacterial agents from doped halloysite nanotubes [J]. Bioengineering-Basel, 2015, 3(1): 157
13 Lvov Y M, DeVilliers M M, Fakhrullin R F. The application of halloysite tubule nanoclay in drug delivery [J]. Expert Opin. Drug Deliv., 2016, 13(7): 977
doi: 10.1517/17425247.2016.1169271 pmid: 27027933
14 Vishant G, Sandrine Z, Antoine S, et al. Inhibition of the initial stages of corrosion by 2-mercaptobenzothiazole adsorption and the effects of interfacial oxides on copper in neutral chloride conditions [J]. Corros. Sci., 2023, 225: 11596
15 Kartsonakis L A, Koumoulos E P, Charitidis C A. Advancement in corrosion resistance of AA 2024-T3 through sol-gel coatings including nanocontainers [J]. Manuf. Rev., 2017, 4:2
16 Bozzini B, Busson B, Gaudenzi G P D, et al. Corrosion of cemented carbide grades in petrochemical slurries. Part I - Electrochemical adsorption of CN¯, SCN¯ and MBT: A study based on in situ SFG [J]. Int. J. Refract. Met. Hard Mat., 2016, 60: 37
17 Deng P P, Zhang Y S, Niu Z Y, et al. Multifunctional konjac glucomannan/xanthan gum self-healing coating for bananas preservation [J]. Int. J. Biol. Macromol., 2024, 270(P1): 132287
18 Liu A L, Zhai Y, Fu C H, et al. Self-healing coatings for large-scale damages via ultrahigh load capacity of healing agents in short kapok microtubules [J]. Colloid Surf. A-Physicochem. Eng. Asp., 2024, 693: 134045
19 Chen Y H, Wu L, Yao W H, et al. “Smart” micro/nano container-based self-healing coatings on magnesium alloys: A review [J]. J. Magnes. Alloy., 2023, 11(7): 2230
20 Shchukin D G, Lamaka S V, Yasakau K A, et al. Active anticorrosion coatings with halloysite nanocontainers [J]. J. Phys. Chem. C, 2008, 112(4): 958
21 Xie M, Huang K B, Yang F, et al. Chitosan nanocomposite films based on halloysite nanotubes modification for potential biomedical applications [J]. Int. J. Biol. Macromol., 2020, 151: 1116
doi: S0141-8130(19)37024-2 pmid: 31751717
22 Hessam J, Reza M G, Bagher K, et al. Highly efficient sunitinib release from pH-responsive mHPMC@Chitosan core-shell nanoparticles [J]. Carbohydr. Polym., 2021, 258: 117719
23 Hao X, Qin D, Wang W, et al. Potential non-releasing bacteria-triggered structure reversible nanomicelles with antibacterial properties [J]. Chem. Eng. J., 2021, 403: 126334
24 Ma Q, Liu L L, Wang P, et al. Preparation and corrosion resistance study of a pH-responsive plasma electrolytic oxidation coating modified by halloysite nanotubes [J]. Mater. Today Commun., 2024, 38: 108541
25 Zhai R, Zhang B, Wan Y Z, et al. Chitosan-halloysite hybrid-nanotubes: Horseradish peroxidase immobilization and applications in phenol removal [J]. Chem. Eng. J., 2013, 214: 304
26 Badiei A, Goldooz H, Ziarani G M. A novel method for preparation of 8-hydroxyquinoline functionalized mesoporous silica: Aluminum complexes and photoluminescence studies [J]. Appl. Surf. Sci., 2010, 257(11): 4912
27 Wang M. Preparation and corrosion behavior of self-healing coating with halloysite nanotube loaded inhibitor [D]. Tianjin: Tianjin University, 2019
王 美. 埃洛石纳米管负载缓蚀剂型自愈涂层的制备与耐蚀性能 [D]. 天津: 天津大学, 2019
28 Zhao Q, Guo J X, Cui G D, et al. Chitosan derivatives as green corrosion inhibitors for P110 steel in a carbon dioxide environment [J]. Colloid Surf. B-Biointerfaces, 2020, 194: 111150
29 Liu J R, Sipponen M H. Ag-lignin hybrid nanoparticles for high-performance solar absorption in photothermal antibacterial chitosan films [J]. iScience, 2023, 26(10): 108058
30 AlZaidy G A. Impact of hybrid aluminum oxide/titanium dioxide nanoparticles on the structural, optical, and electrical properties of polyvinyl alcohol/ polyethylene glycol nanocomposites for flexible optoelectronic devices [J]. Ceram. Int., 2024, 50(13PA): 23483
31 Saldaña R U A, Cortés L S A, Jiménez A J A, et al. Evaluation of the toxicity and cisplatin drug release ability of nanocomposites of polyethylene glycol and carbon nanotubes functionalized with Zn2+ions [J]. Int. J. Polym. Mater. Polym. Biomat., 2024, 73(11): 946
32 Dong C D. Research on Preparation and Properties of pH-responsive Halloysite nanomaterials [D]. Nanjing: Nanjing University of Aeronauticsand Astronaqutics, 2018
董春栋. pH响应型埃洛石纳米材料的制备及其性能研究 [D]. 南京: 南京航空航天大学, 2018
33 Wang W, Xu L K, Li X B, et al. Self-healing properties of protective coatings containing isophorone diisocyanate microcapsules on carbon steel surfaces [J]. Corros. Sci., 2014, 80: 528
34 Arabzadeh H, Shahidi M, Foroughi M M. Electrodeposited polypyrrole coatings on mild steel: Modeling the EIS data with a new equivalent circuit and the influence of scan rate and cycle number on the corrosion protection [J]. J. Electroanal. Chem., 2017, 807: 162
35 Rohwerder M, Turcu F. High-resolution Kelvin probe microscopy in corrosion science: Scanning Kelvin probe force microscopy (SKPFM) versus classical scanning Kelvin probe (SKP) [J]. Electrochim. Acta, 2007, 53(2): 290
36 Song L Y, Gao Z, Sun Q, et al. Corrosion protection performance of a coating with 2-aminino-5-mercato-1,3,4-thiadizole-loaded hollow mesoporous silica on copper [J]. Prog. Org. Coat., 2023, 175: 107331
37 Huo S J, Chen L H, Zhu Q, et al. Surface-enhanced infrared absorption spectroscopy study of anticorrosion behavior of 2-Mercaptobenzothiazole on copper [J]. Acta Phys.-Chim. Sin., 2013, 29(12): 2565
38 Jiao J, Li X, Zhang S, et al. Redox and pH dual-responsive PEG and chitosan-conjugated hollow mesoporous silica for controlled drug release [J]. Mater. Sci. Eng. C-Mater. Biol. Appl., 2016, 67: 26
[1] ZHU Guohao, CHEN Ping, XU Jilei, SUN Huimin. Preparation and Properties of Curd Polyimide Modified by Oligomeric Polyimide[J]. 材料研究学报, 2025, 39(2): 103-112.
[2] JIANG Fan, LI Wantong, ZHAO Shufa, SHI Ning, ZHANG Mengxia, FANG Qinghong, LI Donghan. Synthesis of High Performance Carboxyl-terminated Liquid Fluoroelastomers Based on Fluorination Addition Reaction[J]. 材料研究学报, 2025, 39(1): 11-20.
[3] ZHOU Jian, XIA Mengyue, ZHANG Hangfei, LIU Qiaojun. Preparation of Dopamine and Polyethyleneimine Co-deposition Modified Cation Exchange Membrane[J]. 材料研究学报, 2024, 38(8): 585-592.
[4] WENG Xin, LI Qiqi, YANG Guifang, LV Yuancai, LIU Yifan, LIU Minghua. Preparation of Adsorbent Fe-loaded Cellulose/Tannin and Its Adsorption Characteristics for Fluoroquinolones Antibiotics[J]. 材料研究学报, 2024, 38(2): 92-104.
[5] AO Shuangshuang, XU Jiachen, WANG Yuzuo, RUAN Dianbo, QIAO Zhijun. Preparation and Electrochemical Properties of Discarded Polylactic Acid Hard Carbon[J]. 材料研究学报, 2024, 38(11): 811-820.
[6] LI Yuxuan, DU Yonggang, SU Junming, WANG Zhi, ZHU Yongfei. Superhydrophobic Sponge Coated with Polybenzoxazine and ZnO for Oil-Water Separation[J]. 材料研究学报, 2024, 38(1): 71-80.
[7] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[8] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[9] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[10] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[11] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[12] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[13] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[14] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[15] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
No Suggested Reading articles found!