Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (5): 371-376    DOI: 10.11901/1005.3093.2024.328
ARTICLES Current Issue | Archive | Adv Search |
MOFs Derived C/LDH/rGO Network Composite Materials for High Specific Capacity High-performance Aqueous Zinc Ion Capacitors
LIU Yanyun1(), WANG Na1, ZHANG Zhihua2, BAI Wen1, LIU Yunjie1, CHEN Yongqiang3, LI Wanxi1, LI Yu1
1.Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030619, China
2.Customs Technology Center of Taiyuan, Taiyuan 030006, China
3.Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China
Cite this article: 

LIU Yanyun, WANG Na, ZHANG Zhihua, BAI Wen, LIU Yunjie, CHEN Yongqiang, LI Wanxi, LI Yu. MOFs Derived C/LDH/rGO Network Composite Materials for High Specific Capacity High-performance Aqueous Zinc Ion Capacitors. Chinese Journal of Materials Research, 2025, 39(5): 371-376.

Download:  HTML  PDF(6100KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Aqueous Zn ion hybrid capacitors (ZICs), as an emerging energy storage device with low cost, high operational safety and low redox potential, have become a research hotspot in the field of energy storage. This paper focuses on the important research of low energy density of capacitor electrode materials in ZICs. Metal-organic frameworks (MOFs)-derived carbon (C)/layered double hydroxides (LDH)/graphene (rGO) network composite materials with self-supporting characteristics are designed and synthesized. The structure and morphology of the material were characterized by X-ray diffractometer, scanning electron microscope and X-ray photoelectron spectroscopy. The results showed that the MOFs-derived C/ Ni-Co LDH particles were granular structure, dispersed on lamellae of the rGO, forming a network composite material. The specific capacitance of the Zn ion capacitor assembled by this material can reach 248 F·g-1 at a current density of 1.0 A·g-1, which is much larger than the specific capacitance of rGO (142 F·g-1). After 1500 cycles, the capacitance retention rate of the Zn ion capacitor is still as high as 97.1%. The network structure not only provides more transmission channels for electrolyte ions, but also provides more pseudocapacitive active sites. The completion of this paper provides some theoretical guidance and practical significance for the development of high specific energy storage devices.

Key words:  composite materials      zinc ion capacitors      hydrothermal method      energy density     
Received:  25 July 2024     
ZTFLH:  TB383  
Fund: Shanxi Province Basic Research Free Exploration Project(202103021224307);Postgraduate Education Innovation Plan Project(2021YJG336);Shanxi Province Science and Technology Innovation Youth Talent Team
Corresponding Authors:  LIU Yanyun, Tel: 15698402116, E-mail: 312217642@qq.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.328     OR     https://www.cjmr.org/EN/Y2025/V39/I5/371

Fig.1  Preparation flow chart of MOFs derived C/LDH/rGO network composite materials
Fig.2  XRD (a), SEM (b~d) and EDS mapping images (e~h) of MOFs derived C/LDH/rGO network composite materials
Fig.3  XPS spectra of MOFs derived C/LDH/rGO network composite materials
(a) full spectrum, (b) C 1s spectrum, (c) Co 2p spectrum, (d) O 1s spectrum
Fig.4  Zinc ion capacitor assembled by MOFs derived C /LDH /rGO network composite materials
(a) Reaction process simulation diagram, (b) CV curves under different scanning rate, (c) Capacitance contribution CV curve at a scanning rate of 5 mV/s, (d) The proportion of surface-controlled capacitance contribution and diffusion-controlled contribution at different scanning rates, (e) CP curves at different current densities, (f) The relationship between electrode specific capacity and current densities
Fig.5  Comparison of zinc ion capacitors assembled by MOFs derived C/LDH/rGO network composite materials and rGO
(a) CP curves of two devices (current density of 1 A/g), (b) Cycle life diagram of two devices, (c) EIS curves of zinc ion capacitors assembled by MOFs derived C/LDH/rGO network composite materials
1 Xia Y, Mathis T S, Zhao M Q, et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes [J]. Nature, 2018, 557(7705): 409
2 Kundu D, Adams B D, Duffort V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode [J]. Nat. Energy, 2016, 1(10): 16119
3 Bi S, Banda H, Chen M, et al. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes [J]. Nat. Mater., 2020, 19(5): 552
doi: 10.1038/s41563-019-0598-7 pmid: 32015536
4 Liu Y, Chen P, Zhou X, et al. Preparation and electrochemical properties of hollow FeS2/NiS2/Ni3S2@NC cube composites [J]. Chin. J. Mater. Res., 2024, 38(6): 453
刘 莹, 陈 平, 周 雪 等. 中空FeS2/NiS2/Ni3S2@NC立方体复合材料的制备及其电化学性能 [J]. 材料研究学报, 2024, 38(6): 453
5 Lin M C, Gong M, Lu B, et al. An ultrafast rechargeable aluminium-ion battery [J]. Nature, 2015, 520(4): 325
6 Simon P, Gogotsi Y, Materials for electrochemical capacitors[J]. Nat. Mater., 2008, 7(11): 845
doi: 10.1038/nmat2297 pmid: 18956000
7 Ding J, Hu W, Paek E D, et al. Review of hybrid ion capacitors: from aqueous to lithium to sodium [J]. Chem. Rev., 2018, 118(6): 6457
8 Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ion batteries: a review [J]. Energy Environ. Sci., 2011, 4(9): 3243
9 Tang H, Yao J, Zhu Y, et al. Recent developments and future prospects for zinc‐ion hybrid capacitors: a review [J]. Adv. Energy Mater., 2021, 11: 2003994
10 Fang G, Zhou J, Pan A, et al. Recent advances in aqueous zinc-ion batteries [J]. ACS Energy Lett., 2018, 3(7): 2480
11 Tang B, Shan L, Liang S, et al. Issues and opportunities facing aqueous zinc-ion batteries [J]. J. Energy Environ. Sci., 2019, 12(11): 3288
12 An G, Hong J S, Pak Y, et al. 2D metal Zn nanostructure electrodes for high‐performance Zn ion supercapacitors [J]. Adv. Energy Mater., 2020, 10: 1902981
13 Zhu Y, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene [J]. Science, 2011, 332(6037): 1537
doi: 10.1126/science.1200770 pmid: 21566159
14 Wang B, Zhao J, Zhang D H, et al. Three-dimensional porous carbon framework coated with one-dimensional nanostructured polyaniline nanowires composite for high performance supercapacitors [J]. Appl. Surf. Sci., 2019, 474(30): 147
15 Simon P, Gogotsi Y, Materials for electrochemical capacitors[J]. Nat. Mater. 2008, 7(11): 845
doi: 10.1038/nmat2297 pmid: 18956000
16 Kolleboyina J, Michael H, Andreas S, et al. Covalent graphene-MOF hybrids for high-performance asymmetric supercapacitors [J]. Adv. Mater., 2021, 33: 2004560
17 Pan Z, Jiang Y, Yang P, et al. In Situ Growth of layered bimetallic ZnCo hydroxide nanosheets for high-performance all-solid-state pseudocapacitor [J]. ACS Nano, 2018, 12: 2968
18 Kandula S, Shrestha K, Rajeshkhanna R, et al. Kirkendall growth and ostwald ripening induced hierarchical morphology of Ni-Co LDH/MMoSx (M = Co, Ni, and Zn) heteronanostructures as advanced electrode materials for asymmetric solid-state supercapacitors [J]. ACS Appl Mater Interfaces, 2019, 11(12): 11555
19 Du Q, Su L, Hou L, et al. Rationally designed ultrathin Ni-Al layered double hydroxide and graphene heterostructure for high-performance asymmetric supercapacitor [J]. J. Alloy. Compd., 2018, 740: 1051
20 Hummers W S, Offeman R E, Preparation of graphitic oxide [J]. J. Amer. Chem. Soc., 1958, 80: 1339
21 Liu Y Y, Li W X, Chen Y Q, of MOF derivatives@Synthesis3D graphene hybrid materials towards high-performance electrode material for supercapacitors [J]. J. Mater. Sci.: Mater. Electron, 2022, 33:6514
22 Liu Y Y, Ma L, Chen Y Q, A simple one-step approach for preparing flexible rGO-MnO2 electrode material [J]. J. Mater. Sci.: Mater. Electron, 2018, 29: 17438
23 Zhu Y L, Du W, Zhang Q L, A metal-organic framework template derived hierarchical Mo-doped LDHs@ MOF-Se core-shell array electrode for supercapacitors [J]. Chem. Commun., 2020, 56: 13848
24 Jayaramulu K, Horn M, Schneemann A, et al. Covalent graphene‐MOF hybrids for high‐performance asymmetric supercapacitors [J]. Adv. Mater., 2021, 33: 2004560
25 Brezesinski T, Wang J, Tolbert S H, et al. Ordered mesoporous  α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors [J]. Nat. Mater., 2010, 9: 146
doi: 10.1038/nmat2612 pmid: 20062048
[1] LIU Yanyun, LIU Yutao, LI Wanxi. Preparation and Electrochemical Performance of rGO/PANI/MnO2 Ternary Composites[J]. 材料研究学报, 2022, 36(7): 552-560.
[2] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[3] PENG Zitong, GAO Yanrong, YAO Chu, YAO Junlong, ZHU Wenwen, XU Wen, JIANG Xueliang. Preparation and Photocatalytic Activity of Fe/Yb Co-doped Titanium Dioxide Hollow Sphere[J]. 材料研究学报, 2021, 35(2): 135-142.
[4] XIA Ao, ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang. Preparation and Electrochemical Properties of B-doped MnO2[J]. 材料研究学报, 2021, 35(1): 36-44.
[5] WANG Fang, ZHOU Baoyu, FENG Wei, LEI Jialiu, JIANG Yufeng, WANG Qidi. Preparation and Condensation Behavior of Wear Resistant Al-based Superhydrophobic Materials[J]. 材料研究学报, 2020, 34(4): 277-284.
[6] QIN Yanli,YANG Yan,ZHAO Pengyu,LIU Zhenyu,NI Dingrui. Microstructures and Photocatalytic Properties of BiOCl-RGO Nanocomposites Prepared by Two-step Hydrothermal Method[J]. 材料研究学报, 2020, 34(2): 92-100.
[7] Qingmin WEI,Xiuying LI,Shihua XU,Guocong LIU,Guobao HUANG,Zhihui LUO. Hydrothermal Synthesis and Photoluminescent Properties of YVO4: Eu3+, Bi3+ Red Phosphors[J]. 材料研究学报, 2019, 33(5): 394-400.
[8] Shunsheng CHEN,Shaozhen LI,Xiaojing LUO,Guohong WANG. Preparation and Photocatalytic Properties of Direct Z-Scheme Hexagonal/Cubic ZnIn2S4 Composite Catalysts[J]. 材料研究学报, 2019, 33(2): 145-154.
[9] Ziqing LI, Wenxiu HE, Yongqiang ZHANG, Huiying YU, Xingsheng LI, Bin LIU. Effect of Different Nitrogen Sources on Structure and Properties of Nitrogen-doped Graphene[J]. 材料研究学报, 2018, 32(8): 616-624.
[10] Zhijun MA, Changye MANG, Junce WANG, Xingyuan WENG, Liwei SI, Zhihao GUAN. Influence of Doping with Metal Ions Co2+, Mn2+ and Cu2+ on Absorbability of Nano Ni-Zn Ferrite[J]. 材料研究学报, 2017, 31(12): 909-917.
[11] Dongze LV,Zhaoke CHEN,Xiang XIONG,Yalei WANG,Wei SUN,Zehao LI. Microstructure and Tribological Property of C-TaC Coatings on Graphite Prepared by Chemical Vapor Deposition[J]. 材料研究学报, 2016, 30(9): 690-696.
[12] NIE Yanyan, SUN Xiaogang, CAI Manyuan, WU Xiaoyong, LIU Zhenhong, YUE Lifu. Graphitized Whisker-like Carbon Nanotubes as Electrodes for Supercapacitors[J]. 材料研究学报, 2016, 30(7): 538-644.
[13] ZHANG Hao, HUANG Xinjie, ZONG Zhifang, LIU Xiuyu. Preparation and Properties of SiO2 Based Hexadecanol-Palmitic Acid-Lauric Acid Microencapsulated Phase Change and Humidity Controlling Materials with Fine Particle Size[J]. 材料研究学报, 2016, 30(6): 418-426.
[14] ZHANG Jiao, JIANG Xueliang, YU Lu, CHEN Jiangtao. Ceria Hollow Nanospheres Synthesized by Hydrothermal Method and Their Adsorption Capacity[J]. 材料研究学报, 2016, 30(5): 365-371.
[15] ZHANG Juan, CHEN Xiujuan, ZHANG Penglin. Synthesis and Electrochemical Properties of Flower-like SnS2 by Triton X-100 Assisted Hydrothermal Method as Negative Electrode Material for Lithium Ion Batteries[J]. 材料研究学报, 2016, 30(1): 63-67.
No Suggested Reading articles found!