Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (1): 11-20    DOI: 10.11901/1005.3093.2024.108
ARTICLES Current Issue | Archive | Adv Search |
Synthesis of High Performance Carboxyl-terminated Liquid Fluoroelastomers Based on Fluorination Addition Reaction
JIANG Fan1,2, LI Wantong1,2, ZHAO Shufa3, SHI Ning1, ZHANG Mengxia1, FANG Qinghong1,2, LI Donghan1,2()
1 College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
2 Liaoning Provincial Key Laboratory of Rubber & Elastomer, Shenyang University of Chemical Technology, Shenyang 110142, China
3 Shenyang Guide Rubber Products Co. Ltd., Shenyang 110141, China
Cite this article: 

JIANG Fan, LI Wantong, ZHAO Shufa, SHI Ning, ZHANG Mengxia, FANG Qinghong, LI Donghan. Synthesis of High Performance Carboxyl-terminated Liquid Fluoroelastomers Based on Fluorination Addition Reaction. Chinese Journal of Materials Research, 2025, 39(1): 11-20.

Download:  HTML  PDF(3430KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A high-performance carboxyl-terminated liquid fuoroelastomers (SCTLF) was synthesized by a one-pot oxidative degradation/fluorination addition synergistic reaction for the first time, with 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2,2,2]octane bis(tetrafluoroborate)(Selectflour) as fluorination reagent, tetrabutylammonium fluoride (TBAF) as nucleophilic reagent, and N-bromosuccinimide (NBS) as electrophilic reagent. This reaction system can simultaneously eliminate the fluorinated double bonds (C=C), increase the fluorine content, enhance their thermal stability, and thereby achieve high performance of the products. The molecular chain structure of the synthesized SCTLF was characterized by using Fourier-transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H-NMR), and fluorine nuclear magnetic resonance (19F-NMR). Besides, its molecular weight and terminal group content was determined by means of gel permeation chromatography (GPC) and chemical titration method. After the fluorination addition reaction, SCTLF had average molecular weight of 2410, carboxyl content of 2.30%, and C=C content decreased from 0.30 mmol/g to 0.08 mmol/g. The fluorinated C=C conforming to Zaitsev's rule showed high reactivity and complete reaction, while those conforming to Hofmann's rule had some residuals, with a calculated fluorine content of 65.47%. The glass transition temperature (Tg) of SCTLF was -34 oC, and its initial thermal decomposition temperature (Td) significantly increased to 270 oC. At 20 oC, its dynamic viscosity was 46 Pa·s. The curing of SCTLF with HDI trimer resulted in a cured product with excellent mechanical properties and chemical stability.

Key words:  organic polymer materials      fluorination addition reaction      liquid fluoroelastomers      one-pot method     
Received:  07 March 2024     
ZTFLH:  TQ333.93  
Fund: National Natural Science Foundation Youth Fund of China(52003165);Youth Talent Support Program of Liaoning Province(XLYC2203101);Educational Department Foundation of Liaoning Province(LJKMZ20220769);Natural Science Foundation of Liaoning Province(2023-MSLH272);Program for Young & Middle-aged Scientific and Technological Innovative Talents of Shenyang(RC210195);National Science Foundation Training Project for Excellent Young Scholars of SYUCT(2022YQ001)
Corresponding Authors:  LI Donghan, Tel: 15904024628, E-mail: lidonghansyuct@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.108     OR     https://www.cjmr.org/EN/Y2025/V39/I1/11

Temperature / oCMn¯PDICOOH / %C=C / mmol·g-1
-26201.802.450.30
1025101.881.940.26
2024601.932.230.18
3024101.922.250.10
4024301.922.230.12
5024501.922.220.13
6023802.052.210.11
Table 1  Effect of reaction temperature on the product structure
Time / hMn¯PDICOOH / %C=C / mmol·g-1
-26201.802.450.30
225101.882.380.26
424701.932.330.18
624801.952.300.14
824301.932.270.12
1024101.922.250.10
1224502.112.120.10
Table 2  Effect of reaction time on the product structure
[Selectfluor]: [C=C]Mn¯PDICOOH / %C=C / mmol·g-1
-26201.802.450.30
1.0:1.024301.882.380.14
2.0:1.024101.852.300.08
3.0:1.024201.902.300.11
4.0:1.024901.952.270.13
5.0:1.024401.922.230.11
Table 3  Effect of amount of Selectflour on the product structure
[TBAF]: [C=C]Mn¯PDICOOH / %C=C / mmol·g-1
-26201.802.450.30
0.5:1.024201.822.360.12
1.0:1.024101.852.300.08
1.5:1.023801.932.110.11
2.0:1.024202.011.980.13
2.5:1.024802.401.860.13
Table 4  Effect of amount of TBAF on the product structure
[NBS]: [C=C]Mn¯PDICOOH / %C=C / mmol·g-1
-26201.802.450.30
0.5/1.024101.852.300.08
1.0/1.024201.822.230.11
1.5/1.023001.932.200.14
2.0/1.024401.882.090.12
2.5/1.024902.072.020.13
Table 5  Effect of amount of NBS on the product structure
Fig.1  FT-IR spectra of CTLF and SCTLF
Fig.2  1H-NMR spectra of CTLF and SCTLF
Fig.3  19F-NMR spectra of CTLF and SCTLF
No.δ / × 10-6Assignment
a-63.46-CF2C F2COOH
b-70.67-CH2CF2CF(C F3)CF2CH2-
c-73.71-CF2CH=C(C F3)CF2-
d-75.19-CF2CH2CF(C F3)CF2CF2-
e-80.66-CH=CFCF(C F3)-
f-81.30-CF=CHCF(C F3)CF2-
g-91.62-CF2CH2C F2CH2CF2-
h-93.56-CF2CH2C F2CH2CF(CF3)-
i-95.64-CH2CH2C F2CH2CF2-
j-103.62-CF2CH2C F2CF(CF3)CF2-
k-108.96-CF(CF3)CH2C F2CF(CF3)CF2-
l-110.51-CF2CH2C F2CF2CF(CF3)-
m-112.53-CF(CF3)CH2C F2CF2CH2-
n-113.95-CF2CH2C F2CF2CH2-
o-116.24-CH2CH2C F2CF2CF(CF3)-
p-118.72-CH2CF2C F2CF(CF3)CH2-
Table 6  Assignments of 19F-NMR peaks in CTLF and SCTF
Fig.4  GPC spectra of CTLF and SCTLF
TypeMn¯PDI
CTLF26201.80
SCTLF24101.85
Table 7  Molecular weight and molecular weight distribution of CTLF and SCTLF
Fig.5  Mechanism of fluorination addition reaction
Fig.6  DSC curves of CTLF and SCTLF
Fig.7  TGA (a) and DTG (b) thermograms of CTLF and SCTLF
Fig.8  Dynamic viscosity of CTLF and SCTLF
Fig.9  FT-IR spectra of SCTLF, HDI trimer and cured SCTLF
Fig.10  Curing mechanism of SCTLF
Fig.11  Mechanical properties of cured CTLF and cured SCTLF
Fig.12  Aircraft oil, acid and alkali resistance of cured CTLF and cured SCTLF
1 Yang C, Li D H, Li P, et al. Synthesis and properties of the novel high-performance 2 hydroxyl-terminated liquid fluoroelastomer [J]. Polymers, 2023, 15(1): 2574
2 Chang Y F, Liao M Y, Li X Y. Reduction of liquid terminated-carboxyl fluoroelastomers using NaBH4/SmCl3 [J]. RSC Adv., 2020, 10(18): 10932
3 Abdelhamid M I, Aboelwafa A M, Elhadidy H, et al. Investigation of the structure and piezoelectricity of poly (vinylidene fluoride-trifluroethylene) copolymer doped with different dyes [J]. Int. J. Polym. Mater. Polym. Biomater., 2012, 61(7): 505
4 Yu H W, Zhang R, Rong Y, et al. Structure and thermal stability of fluororubber [J]. Special Purpose Rubber Products, 2020, 41(5): 59
于宏伟, 张 蕊, 戎 媛 等. 氟橡胶结构及热稳定性研究 [J]. 特种橡胶制品, 2020, 41(5): 59
5 Lee P C, Kim S Y, Ko Y K, et al. Durability and service life prediction of fluorocarbon elastomer under thermal environments [J]. Polymers, 2022, 14(10): 2047
6 Destarac M, Matyjaszewski K, Silverman E, et al. Atom transfer radical polymerization initiated with vinylidene fluoride telomers [J]. Macromolecules, 2000, 33(13): 4613
7 Mitra S, Ghanbari‐Siahkali A, Kingshott P, et al. Chemical degradation of an uncrosslinked pure fluororubber in an alkaline environment [J]. J. Polym. Sci. A Polym. Chem., 2004, 42(24): 6216
8 Saint-Loup R, Ameduri B. Photochemical induced polymerization of vinylidene fluoride (VDF) with hydrogen peroxide to obtain original telechelic PVDF [J]. J. Fluorine Chem., 2002, 116(1): 27
9 Hu Z K, Finlay J A, Chen L, et al. Photochemically cross-linked perfluoropolyether-based elastomers: synthesis, physical characterization, and biofouling evaluation [J]. Macromolecules, 2009, 42(18): 6999
10 Sawada H, Tashima T, Nishiyama Y, et al. Iodine transfer terpolymerization of vinylidene fluoride, α-trifluoromethacrylic acid and hexafluoropropylene for exceptional thermostable fluoropolymers/silica nanocomposites [J]. Macromolecules, 2011, 44(5): 1114
11 Li D H, Liao M Y. Study on the dehydrofluorination of vinylidene fluoride (VDF) and hexafluoropropylene (HFP) copolymer [J]. Polym. Degrad. Stabil., 2018, 152: 116
12 Li D H. Preparation, curing, structures and properties of end-functionalized liquid fluoroelastomers [D]. Dalian: Dalian Maritime University, 2018
李东翰. 液体端基官能化氟橡胶的制备, 固化及其结构和性能研究 [D]. 大连: 大连海事大学, 2018
13 Li D H, Liao M Y. Preparation of telechelic hydroxyl low molecular weight fluoropolymers [J]. Key Eng. Mater., 2017, 753: 93
14 Liao M Y, Li D H. Preparation of low molecular weight fluoropolymer with hydroxyl end by borohydride/rare earth chloride reduction system [P]. China, CN107674133B, 2019
廖明义, 李东翰. 硼氢化物/稀土元素氯化物还原体系制备端羟基低分子量含氟聚合物的方法 [P]. 中国, CN107674133B, 2019
15 Scattolin T, Bouayad-Gervais S, Schoenebeck F. Straightforward access to N-trifluoromethyl amides, carbamates, thiocarbamates and ureas [J]. Nature, 2019, 573(7772): 102
16 Liu Y Y, Zhao Y X, Chen Y F, et al. Research progress of fluorinated reagents and application of selectfluor (F-TEDA-BF4) in organic synthesis [J]. Organo-Fluorine Industry, 2018, (3): 54
刘园园, 赵翊晓, 陈焱锋 等. 氟化试剂的研究进展及Selectfluor在有机合成中的应用 [J]. 有机氟工业, 2018, (3): 54
17 Yang K, Song M, Ali A I M, et al. Recent advances in the application of selectfluor as a “fluorine-free” functional reagent in organic synthesis [J]. Chem. Asian J., 2020, 15(6): 729
18 Burkart M D, Zhang Z, Hung S C, et al. A new method for the synthesis of fluoro-carbohydrates and glycosides using selectfluor [J]. J. Am. Chem. Soc., 1997, 119(49): 11743
19 Ishimaru T, Shibata N, Reddy D S, et al. DBFOX-Ph/metal complexes: Evaluation as catalysts for enantioselective fluorination of 3-(2-arylacetyl)-2-thiazolidinones [J]. Beilstein. J. Org. Chem., 2008, 4(1): 16
20 Sun H, DiMagno S G. Anhydrous tetrabutylammonium fluoride [J]. J. Am. Chem. Soc., 2005, 127(7): 2050
pmid: 15713075
21 Kaburagi Y, Kishi Y. Operationally simple and efficient workup procedure for TBAF-mediated desilylation: application to halichondrin synthesis [J]. Org. Lett., 2007, 9(4): 723
pmid: 17286380
22 Li L, Zhang G, Zhu A, et al. A convenient preparation of 5-iodo-1, 4-disubstituted-1, 2, 3-triazole: Multicomponent one-pot Reaction of azide and alkyne mediated by CuI-NBS [J]. J. Org. Chem., 2008, 73(9): 3630
23 Duan J, Yang C, Kang H, et al. Structure, preparation and properties of liquid fluoroelastomers with different end groups [J]. RSC Adv., 2022, 12(5): 3108
doi: 10.1039/d1ra07810k pmid: 35425283
24 Silverstein R M, Bassler G C. Spectrometric identification of organic compounds [J]. J. Chem. Educ., 1962, 39(11): 546
25 Li D H. Dehydrofluorination mechanisms and structures of fluoroelastomers in alkaline environments [J]. J. Fluorine Chem., 2018, 32: 1730
26 Souzy R, Ameduri B, von Ahsen S, et al. Use of bis (trifluoromethyl) peroxy dicarbonate as initiator in the radical homopolymerisation of vinylidene fluoride (VDF) and copolymerisation of VDF with hexafluoropropylene [J]. J. Fluorine Chem., 2003, 123(1): 85
27 Taguet A, Sauguet L, Ameduri B, et al. Fluorinated cotelomers based on vinylidene fluoride (VDF) and hexafluoropropene (HFP): Synthesis, dehydrofluorination and grafting by amine containing an aromatic ring [J]. J. Fluorine Chem., 2007, 128(6): 619
28 Yang Z Y. Addition reaction of halogens to vinyl (pentafluorocyclopropanes): Competition between a radical addition and an electrophilic addition [J]. J. Org. Chem., 2003, 68(13): 5419
29 Cheburkov Y, Moore G G I. 2, 2-Dihydroperfluoropentane (HFC 4310 mf) synthesis from HFP dimer [J]. J. Fluorine Chem., 2003, 123(2): 227
30 Talavera M, Meißner G, Rachor S G, et al. C-F activation reactions at germylium ions: dehydrofluorination of fluoralkanes [J]. Chem. Commun., 2020, 56(32): 4452
31 Souzy R, Boutevin B, Ameduri B. Synthesis and characterizations of novel proton-conducting fluoropolymer electrolyte membranes based on poly (vinylidene fluoride-ter-hexafluoropropylene-ter-α-trifluoromethacrylic acid) terpolymers grafted by aryl sulfonic acids [J]. Macromolecules, 2012, 45(7): 3145
[1] ZHU Guohao, CHEN Ping, XU Jilei, SUN Huimin. Preparation and Properties of Curd Polyimide Modified by Oligomeric Polyimide[J]. 材料研究学报, 2025, 39(2): 103-112.
[2] ZHOU Jian, XIA Mengyue, ZHANG Hangfei, LIU Qiaojun. Preparation of Dopamine and Polyethyleneimine Co-deposition Modified Cation Exchange Membrane[J]. 材料研究学报, 2024, 38(8): 585-592.
[3] WENG Xin, LI Qiqi, YANG Guifang, LV Yuancai, LIU Yifan, LIU Minghua. Preparation of Adsorbent Fe-loaded Cellulose/Tannin and Its Adsorption Characteristics for Fluoroquinolones Antibiotics[J]. 材料研究学报, 2024, 38(2): 92-104.
[4] AO Shuangshuang, XU Jiachen, WANG Yuzuo, RUAN Dianbo, QIAO Zhijun. Preparation and Electrochemical Properties of Discarded Polylactic Acid Hard Carbon[J]. 材料研究学报, 2024, 38(11): 811-820.
[5] LI Yuxuan, DU Yonggang, SU Junming, WANG Zhi, ZHU Yongfei. Superhydrophobic Sponge Coated with Polybenzoxazine and ZnO for Oil-Water Separation[J]. 材料研究学报, 2024, 38(1): 71-80.
[6] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[7] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[8] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[9] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[10] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[11] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[12] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[13] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[14] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[15] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
No Suggested Reading articles found!