| 
					Cite this article:
						|  |  
    					|  |  
    					| Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N |  
						| ZHAO Zhengxiang1, LIAO Luhai1, XU Fanghong2, ZHANG Wei2, LI Jingyuan1(  ) |  
						| 1.Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2.State Key Laboratory of Advanced Stainless Steel Materials, Taiyuan Iron and Steel (Group) Co., Ltd., Taiyuan 030003, China
 |  
						|  |  
					
			      ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N. Chinese Journal of Materials Research, 2023, 37(9): 655-667.	
				 
					
						| 
								
									|  
          
          
            
              
				
												  
													
													    |  |  
														| Abstract Hot deformation behavior and microstructure evolution of super austenitic stainless steel 24Cr-22Ni-7Mo-0.4N were studied by uniaxial compression tests at temperatures from 1123 K to 1473 K under strain rates of 0.001~10 s-1 up to the true strain of 0.8. The deformation parameters were modeled by Arrhenius equation and Zener-Hollomon parameter (Z). The peak stress and critical stress for dynamic recrystallization was found to exhibit a linear relationship with ln(Z/A), the thermal deformation activation energy of the steel was 497.11 kJ/mol. Based on the dynamic material model, the processing maps under different plastic strains were established. Electron backscatter diffraction (EBSD) was used to characterize the microstructure of the steel under different deformation conditions. The softening mechanism of the steel under most deformation conditions is discontinuous dynamic recrystallization (DDRX). Based on the analysis of microstructure and processing map, the optimum processing domain for hot deformation is identified as the deformation temperature of 1150~1200℃ and strain rate of 0.1~1 s-1. |  
															| Received:  02 June 2022 |  
															|  |  
															| Fund: National Natural Science Foundation of China(U1806220);Science and Technology Major Project of Shanxi Province(20191102006) |  
															| Corresponding Authors: 
																LI Jingyuan, Tel: (010)82376939, E-mail: lijy@ustb.edu.cn 
 |  
            
									            
									               
																							
					| 1 | Zhang S C, Jiang Z H, Li H B, et al. Research and development progress of super austenitic stainless steel 654SMO [J]. J. Iron. Steel. Res., 2019, 31(02): 132 |  
					|  | 张树才, 姜周华, 李花兵 等. 超级奥氏体不锈钢654SMO的研究进展[J]. 钢铁研究学报, 2019, 31(02): 132 |  
					| 2 | Gao J B, Fan S P, Zhang S C, et al. Segregation behavior and homogenizing treatment of a new type super austenitic stainless steel 654SMO [J]. Iron. Steel, 2018, 53(08): 83 |  
					|  | 高建兵, 范思鹏, 张树才 等. 新型超级奥氏体不锈钢654SMO偏析行为及均匀化工艺 [J]. 钢铁, 2018, 53(08): 83 |  
					| 3 | Zhang S, Li H, Jiang Z, et al. Chloride- and sulphate-induced hot corrosion mechanism of super austenitic stainless steel S31254 under dry gas environment [J]. Corros. Sci, 2020, 163: 108295 doi: 10.1016/j.corsci.2019.108295
 |  
					| 4 | Lee T H, Kim S J, Jung Y C, et al. Crystallographic details of precipitates in Fe-22Cr-21Ni-6Mo-(N) superaustenitic stainless steels aged at 900℃ [J]. Metall. Mater. Trans, 2000, 31(7): 1713 doi: 10.1007/s11661-998-0332-6
 |  
					| 5 | Liu G, Ying H, Shi Z, et al. Hot deformation and optimization of process parameters of an as-cast 6Mo superaustenitic stainless steel: A study with processing map [J]. Mater. Des., 2014, 53: 662 doi: 10.1016/j.matdes.2013.07.065
 |  
					| 6 | Wang S H, Wu C C, Chen C Y, et al. Cyclic deformation and phase transformation of 6Mo superaustenitic stainless steel [J]. Metal. Mate. Inter., 2007, 13(4): 275 |  
					| 7 | Koutsoukis T, Redjamia A, Fourlaris G, et al. Phase transformations and mechanical properties in heat treated superaustenitic stainless steels [J]. Mater. Sci. Eng. A, 2013, 561(20): 477 doi: 10.1016/j.msea.2012.10.066
 |  
					| 8 | Pu E, Zheng W, Xiang J, et al. Hot deformation characteristic and processing map of superaustenitic stainless steel S32654 [J]. Mater. Sci. Eng. A, 2014, 598(26): 174 doi: 10.1016/j.msea.2014.01.027
 |  
					| 9 | Zhong X T, Wang L, Huang L K, et al. Transition of dynamic recrystallization mechanism during hot deformation of Incoloy 028 alloy [J]. J. Mater. Sci. Tec., 2020, 42(07): 243 |  
					| 10 | Pu E, Han F, Min L, et al. Constitutive modeling for flow behaviors of superaustenitic stainless steel S32654 during hot deformation [J]. J. Iron. Steel. Res., 2016, 23(02): 178 doi: 10.1016/S1006-706X(16)30031-0
 |  
					| 11 | Lin W A, Zl A, Xin H A, et al. Hot deformation behavior and 3D processing map of super austenitic stainless steel containing 7Mo-0.46N-0.02Ce: Effect of the solidification direction orientation of columnar crystal to loading direction [J]. J. Mater. Sci. Tech., 2021, 13: 618 doi: 10.1179/026708397790285575
 |  
					| 12 | Lin W A, Chen C, Zl A, et al. Orientation-dependent dynamic recrystallization of super austenitic stainless steels [J]. J. Mate. Res. Tech, 2021, 15:6769 |  
					| 13 | Poliak E I, Jonas J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization [J]. Acta Mater., 1996, 44(1): 127 doi: 10.1016/1359-6454(95)00146-7
 |  
					| 14 | Konas J, Sellars C M, Tegart W, et al. Strength and structure under hot-working conditions [J]. Metall. Rev., 2013, 14(1): 1 doi: 10.1179/095066069790138056
 |  
					| 15 | Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel [J]. J. Appl. Phy., 1944, 15(1): 22 doi: 10.1063/1.1707363
 |  
					| 16 | Sabokpa O, Zarei-Hanzaki A, Abedi H R, et al. Artificial neural network modeling to predict the high temperature flow behavior of an AZ81 magnesium alloy [J]. Mater. Des., 2012, 39: 390 doi: 10.1016/j.matdes.2012.03.002
 |  
					| 17 | Manshadi A, Barnett M R, Hodgson P D, et al. Hot Deformation and Recrystallization of Austenitic Stainless Steel: Part I. Dynamic Recrystallization [J]. Metall. Mate. Trans. A, 2008, 39(6): 1359 |  
					| 18 | Mcqueen H J, Ryan N D. Constitutive analysis in hot working[J]. Mate. Sci. Eng. A, 2002, 322(1-2): 43 doi: 10.1016/S0921-5093(01)01117-0
 |  
					| 19 | Prasad Y V R K, Seshacharyulu T. Modelling of hot deformation for microstructural control [J]. Metall. Rev., 1998, 43(6): 243 doi: 10.1179/imr.1998.43.6.243
 |  
					| 20 | Murty S V S N, Rao B N. Ziegler's Criterion on the Instability Regions in Processing Maps [J]. J. Mater. Sci. Letter, 1998, 17(14):1203 doi: 10.1023/A:1006541710533
 |  
					| 21 | Luo J, Li L, Li M Q, et al. The flow behavior and processing maps during the isothermal compression of Ti17 alloy [J]. Mater. Sci. Eng. A, 2014, 606(12): 165 doi: 10.1016/j.msea.2014.03.103
 |  
					| 22 | Zhang S C, Li H B, et al. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654 [J]. J. Mater. Sci. Tech., 2020, 42(07): 145 |  
					| 23 | Marin R, Combeau H, Zollinger J, et al. σ-Phase Formation in Super Austenitic Stainless Steel During Directional Solidification and Subsequent Phase Transformations [J]. Metall. Mater. Trans. A, 2020, 51(7): 3526 doi: 10.1007/s11661-020-05794-1
 |  
					| 24 | Liao L, Li J, Xu F, et al. Role of Substitution of Ni by Co During Isothermal Aging of Superaustenitic Stainless Steels: Precipitation Behavior and Phase Transformations [J]. Metall. Mater. Trans. A, 2022, 53(6): 2130 doi: 10.1007/s11661-022-06656-8
 |  
					| 25 | Zhang S, Jiang Z, Li H, et al. Precipitation behavior and phase transformation mechanism of super austenitic stainless steel S32654 during isothermal aging [J]. Mate. Charac, 2018, 137:244 |  
					| 26 | Koutsoukis T, Redjamia A, Fourlaris G. Phase transformations and mechanical properties in heat treated superaustenitic stainless steels [J]. Mater. Sci. Eng. A, 2013, 561: 477 doi: 10.1016/j.msea.2012.10.066
 |  
					| 27 | Torga Nch Uk V, Rybalchenko O, Dobatkin S V, et al. Hot deformation and dynamic recrystallization of 18%Mn TWIP steels [J]. Adv. Eng. Mater., 2020, 22(10): 1438 |  
					| 28 | Rout M, Ranjan R, Pal S K, et al. EBSD study of microstructure evolution during axisymmetric hot compression of 304LN stainless steel [J]. Mater. Sci. Eng. A, 2018, 711(10): 378 doi: 10.1016/j.msea.2017.11.059
 |  
					| 29 | Yamaguchi I, Yonemura M. Recovery and Recrystallization Behaviors of Ni-30 Mass Pct Fe Alloy During Uniaxial Cold and Hot Compression [J]. Metall. Mater. Trans. A, 2021, 52(8): 3517 doi: 10.1007/s11661-021-06323-4
 |  
					| 30 | Mandal S, Bhaduri A K, Sarma V S. Role of Twinning on Dynamic Recrystallization and Microstructure During Moderate to High Strain Rate Hot Deformation of a Ti-Modified Austenitic Stainless Steel [J]. Metall. Mater. Trans. A, 2012, 43(6): 2056 doi: 10.1007/s11661-011-1012-5
 |  
					| 31 | Fengming, Qin, Hua, et al. Dislocation and twinning mechanisms for dynamic recrystallization of as-cast Mn18Cr18N steel [J]. Mater. Sci. Eng.A, 2017, 684(27): 634 |  
					| 32 | Mataya M C, Sackschewsky V E. Effect of internal heating during hot compression on the stress-strain behavior of alloy 304L [J]. Metal. Mater. Trans. A, 1994, 25(12):2737 doi: 10.1007/BF02649226
 |  
					| 33 | Goetz R L, Semiatin S L. The adiabatic correction factor for deformation heating during the uniaxial compression test [J]. J. Mater. Eng. Perform, 2001, 10(6):710 doi: 10.1361/105994901770344593
 |  
					| 34 | Mandal S, Jayalakshmi M, Bhaduri A K, et al. Effect of Strain Rate on the Dynamic Recrystallization Behavior in a Nitrogen-Enhanced 316L(N) [J]. Metall. Mater. Trans. A, 2014, 45(12): 5645 doi: 10.1007/s11661-014-2480-1
 |  
					| 35 | Liao L, Li J, Zhao Z, et al. Precipitation and phase transformation behavior during high-temperature aging of a cobalt modified Fe-24Cr-(22-x)Ni-7Mo-xCo superaustenitic stainless steel [J]. J. Mater. Sci, 2022, 57(7): 4771 doi: 10.1007/s10853-021-06740-1
 |  
					| 36 | Stauffer A C, Koss D A, Mckirgan J B. Microstructural banding and failure of a stainless steel [J]. Metall. Mater. Trans. A, 2004, 35(4):1317 doi: 10.1007/s11661-004-0306-2
 |  
             
								                
															
																| 
																																																																									
																				| No Suggested Reading articles found! |  |  
             
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |