Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (7): 543-553    DOI: 10.11901/1005.3093.2022.350
ARTICLES Current Issue | Archive | Adv Search |
Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives
WANG Wei1(), XIE Zelei1, QU Yishen2, CHANG Wenjuan1, PENG Yiqing1, JIN Jie3, WANG Kuaishe1
1.School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2.School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China
3.School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
Cite this article: 

WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives. Chinese Journal of Materials Research, 2023, 37(7): 543-553.

Download:  HTML  PDF(19775KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Graphene/SiO2 nanocomposites were prepared by sol-gel method using graphene and Tetraethyl orthosilicate as raw materials. The tribological properties of graphene/SiO2 nanocomposites as water-based lubrication additives were evaluated by ball-disk friction and wear testing machine under different loads and in the presence of ultra-pure waters with different additive concentrations. The surface morphology and elemental characteristics of the friction pair were analyzed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results show that under the loading condition of 15N, in ultra-pure water with 0.2% (mass fraction) Graphene/SiO2 nanocomposites as additives the ball-disk pair exhibits the best tribological properties, with the coefficient of friction and the wear rate of the steel ball 17.9% and 61.7% lower, respectively than those in the blank ultra-pure water. Based on the wear surface analysis, the lubrication mechanism is as follows: during the friction process, the physical adsorption film formed by graphene/SiO2 nanocomposites on the wear surface, the layered shear action of graphene, the repair action of SiO2 on the wear surface, and the action of ball bearings. All together effectively improve the tribological properties of ultra-pure water.

Key words:  composite      graphene/SiO2 composite      tribological properties      lubrication mechanism      water-based lubricant     
Received:  28 June 2022     
ZTFLH:  TB332  
Fund: National Natural Science Foundation of China(51975450)
Corresponding Authors:  WANG Wei, Tel: 13609264618, E-mail:gackmol@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.350     OR     https://www.cjmr.org/EN/Y2023/V37/I7/543

Fig.1  Schematic diagram of preparation of Graphene/SiO2 composite nanomaterials
Fig.2  SEM images of different samples (a) graphene, (b) SiO2, (c) graphene/SiO2; (d) energy spectrum of Graphene/SiO2;(e) XRD patterns of Graphene/SiO2, Graphene, Amorphous SiO2 and SiO2
Fig.3  Raman spectra of Graphene/SiO2 and Graphene
Fig.4  Optical images of different lubricants at different time:(a) 0.2% Graphene; (b) 0.2% Graphene/SiO2
Fig.5  Curves of average coefficient of friction and wear rate of Graphene/SiO2 with different contents
Fig.6  Coefficient of friction curve of water and Graphene/SiO2 under different loads (a) 8 N, (b) 10 N, (c) 12 N, (d) 15 N
Fig.7  Coefficient of Friction(a) and wear rates of water and Graphene/SiO2 (b) under various load conditions
Fig.8  3D Micrographs and profiles of wear tracks of TC4 discs (a) Ultra-pure water (b) Graphene/SiO2
Fig.9  OM images of GCr15 wear scars at different loads (a~d) Ultra-pure water (e~h) 0.2% Graphene/SiO2
Fig.10  Hertz contact model of sphere-on-disc
Fig.11  SEM images of wear scars of TC4 discs under different loads: (a~d) Ultra-pure water, (e~h) 0.2% Graphene/SiO2 lubricant
Fig.12  EDS spectra of the wear scar of the TC4 disc lubricated by 0.2%Graphene/SiO2 lubrication additive under 10 N load (a) high resolution SEM image (b) area I EDS (c) area II EDS
Fig.13  EDS spectra of the wear scar of the TC4 disc lubricated by 0.2%Graphene/SiO2 lubrication additive under 15 N load (a) The high resolution SEM image, (b) the spectra, (c~e) the distribution of Ti, C, Si elements
Fig.14  XPS analysis of worn surface of TC4 disc lubricated by Graphene/SiO2: (a) C1s (b) O1s (c) Si2p (d) Al2p (e) Ti2p
Fig.15  Schematic diagram of lubrication mechanism of Graphene/SiO2
1 Li C H, Zhu M, Wang N, et al. Application of titanium alloy in airplane [J]. Chinese Journal of Rare Metals, 2009, 33(1): 84
李重河, 朱 明, 王 宁 等. 钛合金在飞机上的应用 [J]. 稀有金属, 2009, 33(01): 84
2 Niinomi M. Recent progress in research and development of metallic structural biomaterials with mainly focusing on mechanical biocompatibility [J]. Materials Transactions, 2018, 59(1): 1
doi: 10.2320/matertrans.M2017180
3 Liu Q M, Xu J K, Yu H D. Experimental study of tool wear and its effects on cutting process of ultrasonic-assisted milling of Ti6Al4V [J]. International Journal of Advanced Manufacturing Technology, 2020, 108(9-10): 2917
doi: 10.1007/s00170-020-05593-3
4 Zhang H, Qi X. Super low friction characteristics initiated by running-in process inwater-based lubricant for Ti-alloy [J]. Chinese Journal of Materials Research, 2021, 35(5): 349
张会臣, 漆雪莲. 跑合过程引发钛合金水基润滑的超低摩擦特性 [J]. 材料研究学报, 2021, 35(05): 349
5 Cheng J, Li F, Qiao Z H, et al. The role of oxidation and counterface in the high temperature tribological properties of TiAl intermetallics [J]. Materials & Design, 2015, 84: 245
6 Sun J, Meng Y. Lubrication and repair of metal surface by nano-fluid [J]. Surface Technology, 2019, 48(11): 1
孙建林, 孟亚男. 纳米加工液对金属表面的润滑与修复 [J]. 表面技术, 2019, 48(11): 1
7 Xu Y F, Sun K Q, Yu J Y, et al. Tribological properties of TiO2/BP nanocomposites as lubricant additives for titanium alloy tribopairs [J]. Tribology Transactions, 2022, 65(2): 270
doi: 10.1080/10402004.2021.2007317
8 Hegab H, Kishawy H A, Gadallah M H, et al. On machining of Ti-6Al-4V using multi-walled carbon nanotubes-based nano-fluid under minimum quantity lubrication [J]. International Journal of Advanced Manufacturing Technology, 2018, 97(5-8): 1593
doi: 10.1007/s00170-018-2028-4
9 Hou S X, Li Z G, Ren C X, et al. Research progress of graphene as additives in lubrication [J]. Applied Chemical Industry, 2021, 50(6): 1683
侯锁霞, 李兆刚, 任呈祥 等. 石墨烯添加剂润滑性能的研究进展 [J]. 应用化工, 2021, 50(06): 1683
10 Ye X Y, Ma L M, Yang Z G, et al. Covalent functionalization of fluorinated graphene and subsequent application as water-based lubricant additive [J]. Acs Applied Materials & Interfaces, 2016, 8(11): 7483
11 Li M, Yu T B, Zhang R C, et al. MQL milling of TC4 alloy by dispersing graphene into vegetable oil-based cutting fluid [J]. Int. J. Adv. Manuf. Technol., 2018, 99(5-8): 1735
doi: 10.1007/s00170-018-2576-7
12 Kong N, Zhang J, Zhang J, et al. Chemical- and mechanical-induced lubrication mechanisms during hot rolling of titanium alloys using a mixed graphene-incorporating lubricant [J]. Nanomaterials, 2020, 10(4): 665
doi: 10.3390/nano10040665
13 Ibrahim A M M, Li W, Xiao H, et al. Energy conservation and environmental sustainability during grinding operation of Ti-6Al-4V alloys via eco-friendly oil/graphene nano additive and Minimum quantity lubrication [J]. Tribology International, 2020, 150: 106387
doi: 10.1016/j.triboint.2020.106387
14 Fu T, Ma S H, Zhou F, et al. Progress of functionalized graphene nanomaterials and their applications as water-based lubricating additives [J]. Tribology, 2022, 42(2): 408
付 甜, 麻拴红, 周 峰 等. 石墨烯的功能化改性及其作为水基润滑添加剂的应用进展 [J]. 摩擦学学报, 2022, 42(02): 408
15 Wang Y, Hu Y, Zhao H, et al. Research progress of graphene as additives of water-based lubricants [J]. Materials Review, 2021, 35(10A): 19055
16 Meng Y, Su F, Chen Y. Au/Graphene oxide nanocomposite synthesized in supercritical CO2 fluid as energy efficient lubricant additive [J]. ACS. Appl. Mater. Interfaces., 2017, 9(45): 39549
doi: 10.1021/acsami.7b10276
17 Meng Y, Su F, Chen Y J C E J. Synthesis of nano-Cu/graphene oxide composites by supercritical CO2-assisted deposition as a novel material for reducing friction and wear [J]. Chemical Engineering Journal, 2015, 281: 11
doi: 10.1016/j.cej.2015.06.073
18 Wang L, Gong P, Li W, et al. Mono-dispersed Ag/Graphene nanocomposite as lubricant additive to reduce friction and wear [J]. Tribology International, 2020, 146: 106228
doi: 10.1016/j.triboint.2020.106228
19 Xie H M, Jiang B, He J J, et al. Effect of SiO2 nanoparticles as lubricating oil additives on the cold-rolling of AZ31 magnesium alloy sheet [J]. Materials Research Innovations, 2015, 19(suppl.4) : S127
20 Li X, Chen Y, Mo S P, et al. Effect of surface modification on the stability and thermal conductivity of water-based SiO2-coated graphene nanofluid [J]. Thermochimica Acta, 2014, 595: 6
doi: 10.1016/j.tca.2014.09.006
21 Wang N, Wang H, Ren J, et al. Novel additive of PTFE@SiO2 Core-Shell nanoparticles with superior water lubricating properties [J]. Materials & Design, 2020: 109069
22 Zhang C L, He Y, Xu Z H, et al. Fabrication of Fe3O4@SiO2 nanocomposites to enhance anticorrosion performance of epoxy coatings [J]. Polymers for Advanced Technologies, 2016, 27(6): 740
doi: 10.1002/pat.3707
23 Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range [J]. Journal of Colloid and Interface Science, 1968, 26(1): 62
doi: 10.1016/0021-9797(68)90272-5
24 Xiao H P, Guo D, Liu S H, et al. Contact ratio of rough surfaces with multiple asperities in mixed lubrication at high pressures [J]. Appl. Surf. Sci., 2012, 258(8): 3888
doi: 10.1016/j.apsusc.2011.12.053
25 Wu C H, Zhang L C, Qu P L, et al. Characterization of interface stresses and lubrication of rough elastic surfaces under ball-on-disc rolling [J]. Proc. Inst. Mech. Eng. Part. J-J. Eng. Tribol., 2017, 231(12): 1552
doi: 10.1177/1350650117700793
26 Berman D, Erdemir A, Sumant A V. Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen [J]. Carbon, 2013, 59: 167
doi: 10.1016/j.carbon.2013.03.006
27 Mercado-Solis R D, Mata-Maldonado J G, Quinones-Salinas M A, et al. Micro-scale abrasive wear testing of CrN duplex PVD coating on pre-nitrided tool steel [J]. Mater. Res-Ibero-am. J. Mater., 2017, 20(4): 1092
28 Kozisek Z. Crystallization in small droplets: competition between homogeneous and heterogeneous nucleation [J]. J. Cryst. Growth., 2019, 522: 53
doi: 10.1016/j.jcrysgro.2019.06.007
29 Seehra M S, Narang V, Geddam U K, et al. Correlation between X-ray diffraction and Raman spectra of 16 commercial graphene-based materials and their resulting classification [J]. Carbon, 2017, 111: 380
doi: 10.1016/j.carbon.2016.10.010 pmid: 28690336
30 Chen A L, Li Z F, Chen Y. Influence of silica-core structure on polishing characteristics of core/shell structured composite particles of SiO2/CeO2 [J]. Chinese Journal of Materials Research, 2017, 31(6): 429
陈爱莲, 李泽锋, 陈 杨. 氧化硅内核结构对核/壳包覆型SiO2/CeO2复合颗粒抛光性能的影响 [J]. 材料研究学报, 2017, 31(6): 429
doi: 10.11901/1005.3093.2016.625
31 Wang D J, Zhang M Q, Ji Z S, et al. Process and properties of graphene reinforced Mg-based composite prepared by in-situ method [J]. Chinese Journal of Materials Research, 2021, 35(6): 474
王殿君, 张明秋, 吉泽升, 张吉生 等. 原位自生法制备石墨烯增强镁基复合材料的工艺和性能[J]. 材料研究学报, 2021, 35(6): 474
32 Nanda S S, Kim M J, Yeom K S, et al. Raman spectrum of graphene with its versatile future perspectives [J]. Trac-Trends. Anal. Chem., 2016, 80: 125
doi: 10.1016/j.trac.2016.02.024
33 Yang H, Li F, Shan C, et al. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement [J]. J. of Mater. Chem., 2009, 19(26): 4632
doi: 10.1039/b901421g
34 Wan Y J, Gong L X, Tang L C, et al. Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide [J]. Compos. Pt. A.-Appl. Sci. Mannf., 2014, 64: 79
35 Gulzar M, Masjuki H H, Kalam M A, et al. Tribological performance of nanoparticles as lubricating oil additives [J]. Journal of Nanoparticle Research, 2016, 18(8): 223
doi: 10.1007/s11051-016-3537-4
36 Guo J D, Peng R L, Du H, et al. The Application of nano-MoS2 quantum dots as liquid lubricant additive for tribological behavior improvement [J]. Nanomaterials, 2020, 10(2): 12
doi: 10.3390/nano10010012
37 Di Puccio F, Mattei L. Biotribology of artificial hip joints [J]. World Journal of Orthopedics, 2015, 6: 77
doi: 10.5312/wjo.v6.i1.77 pmid: 25621213
38 Wang W, Zhang G L, Xie G X. Ultralow concentration of graphene oxide nanosheets as oil-based lubricant additives [J]. Appl. Surf. Sci., 2019, 498: 10
39 Qin Y L, Yang Y, Zhao P Y, et al. Microstructures and photocatalytic properties of Biocl-rgo nanocomposites prepared by two-step hydrothermal method [J]. Chinese Journal of Materials Research, 2020, 34(2): 92
doi: 10.11901/1005.3093.2019.443
秦艳利, 杨 艳, 赵鹏羽 等, 两步水热法制备BiOCl-RGO纳米复合材料及其光催化性能 [J]. 材料研究学报, 2020, 34(02):92
40 Hou J, Yang P Z, Zheng Q H, et al. Preparation and performance of graphite/TiO2 composite photocatalyst [J]. Chinese Journal of Materials Research, 2021, 35(9): 703
侯 静, 杨培志, 郑勤红 等. 石墨/TiO2复合光催化剂的制备和性能 [J]. 材料研究学报, 2021, 35(9): 703
41 Qi H M, Hu C, Li J, et al. Tribological performance of PTFE and its composite in wide temperature range [J]. Tribology, 2022, 42(1): 65
齐慧敏, 胡 超, 李 洁 等. 宽温域环境中聚四氟乙烯及其复合材料摩擦学性能研究 [J]. 摩擦学学报, 2022, 42(1): 65
42 Hamrock B J, Dowson D. Isothermal elastohydrodynamic lubrication of point contacts: part III—fully flooded results [J]. Journal of Lubrication Technology, 1977, 99(2): 264
doi: 10.1115/1.3453074
43 Mosey N J, Woo T K J T J O P C A. A quantum chemical study of the unimolecular decomposition mechanisms of zinc dialkyldithiophosphate antiwear additives [J]. Journal of Physical Chemistry A, 2004, 108(28): 6001
doi: 10.1021/jp049371i
44 Oztas T, Sen H S, Durgun E, et al. Synthesis of colloidal 2D/3D MoS2 nanostructures by pulsed laser ablation in an organic liquid environment [J]. Journal of Physical Chemistry C, 2014, 118(51): 30120
doi: 10.1021/jp505858h
45 Tang H, Cao K, Wu Q, et al. Synthesis and tribological properties of copper matrix solid self-lubricant composites reinforced with NbSe2 nanoparticles [J]. Crystal Research and Technology, 2011, 46(2): 195
doi: 10.1002/crat.v46.2
46 Li J F, Shi Q, Zhu H, et al. Tribological and electrical behavior of Cu-based composites with addition of Ti-doped NbSe2 nanoplatelets [J]. Ind. Lubr. Tribol., 2018, 70(3): 560
doi: 10.1108/ILT-10-2016-0259
47 Wang Y N, Wan Z P, Lu L S, et al. Friction and wear mechanisms of castor oil with addition of hexagonal boron nitride nanoparticles [J]. Tribology International, 2018, 124: 10
doi: 10.1016/j.triboint.2018.03.035
48 Nguyen D, Xie X D, Wen G, et al. Research on tribological behavior of TiN nanoparticles as lubricating additive [J]. Lubrication Engineering, 2015, 40(9): 42
阮亭纲, 谢先东, 文 广 等. 纳米TiN润滑油添加剂的摩擦学性能研究 [J]. 润滑与密封, 2015, 40(9): 42
49 Li C J, Tang W W, Tang X Z, et al. A molecular dynamics study on the synergistic lubrication mechanisms of graphene/water-based lubricant systems [J]. Tribology International, 2022, 167: 12
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[5] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[6] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[7] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] WANG Xingping, XUE Wenbin, WANG Wenxuan. High Temperature Steam Oxidation Behavior of Zr-2 Alloy with ZrO2/Cr Composite Coating[J]. 材料研究学报, 2023, 37(10): 759-769.
No Suggested Reading articles found!