|
|
Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536 |
WANG Hao1,2, CUI Junjun1,2, ZHAO Mingjiu1,2( ) |
1.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
|
Cite this article:
WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536. Chinese Journal of Materials Research, 2023, 37(7): 535-542.
|
Abstract The microstructure and crystallographic structure characteristics of as cold-rolled strip and foil with different thicknesses of GH3536 alloy after annealing was investigated by optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffractometer (XRD) to get an insight into the recrystallization and grain growth behavior. The results show that the cold rolled strip and foil of GH3536 alloy show a microstructure composed of elongated grains along the rolling directions, and its main phase was γ. The grain growth equations of the strip and foil with thicknesses of 200,100 and 50 μm annealed at 1050~1150℃ for 10~60 min were established respectively, and the relevant activation energies were acquired as follows: Q200 μm=800.34 kJ/mol, Q100 μm=609.50 kJ/mol and Q50 μm=314.79 kJ/mol. The activation energy of the thinner strip and foil was smaller, and the grain growth was more prone to occur. The main factors affecting the grain growth were related to deformation degree and precipitated particles.
|
Received: 28 July 2022
|
|
Fund: National Natural Science Foundation of China and China Academy of Engineering Physics(U1730140) |
Corresponding Authors:
ZHAO Mingjiu, Tel: (024)23975662, E-mail:mjzhao@imr.ac.cn
|
1 |
Lai G Y. An investigation of the thermal stability of a commercial Ni-Cr-Fe-Mo alloy (hastelloy alloy X) [J]. Metall. Trans., 1978, 9A: 827
|
2 |
Aghaie-Khafri M, Golarzi N. Forming behavior and workability of Hastelloy X superalloy during hot deformation [J]. Mater. Sci. Eng., 2008, 486A: 641
|
3 |
Osada T, Nagashima N, Gu Y F, et al. Factors contributing to the strength of a polycrystalline nickel-cobalt base superalloy [J]. Scripta Mater., 2011, 64(9): 892
doi: 10.1016/j.scriptamat.2011.01.027
|
4 |
Pollock T M, Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties [J]. J. Propul. Power., 2006, 22(2): 361
|
5 |
Williams J C, Starke E A. Progress in structural materials for aerospace systems [J]. Acta Mater., 2003, 51(19): 5775
doi: 10.1016/j.actamat.2003.08.023
|
6 |
Chen W, Zhang Y, Ding Y, et al. Size effect of tensile property for ultrathin 304 stainless steel [J]. Int. J. Plast. Eng., 2014, 21(6): 71
|
7 |
Guo B, Zhou J, Shan D B, et al. Size effects of yield strength of brass foil in tensile test [J]. Acta Metall. Sin., 2008, 44(4): 419
|
8 |
Stölken J S, Evans A G. A microbend test method for measuring the plasticity length scale [J]. Acta Mater., 1998. 46(14): 5109
doi: 10.1016/S1359-6454(98)00153-0
|
9 |
Li H Z, Dong X H, Wang Q, et al. Size effects of CuZn37 brass foil in microforming [J]. Mater. Sci. Technol., 2011, 19(4): 15
|
|
李河宗, 董湘怀, 王 倩 等. CuZn37黄铜板料微塑性成形中的尺寸效应研究 [J]. 材料科学与工艺, 2011, 19 (4):15
|
10 |
Fu H H, Benson D J, Meyers M A. Analytical and computational description of effect of grain size on yield stress of metals [J]. Acta Mater., 2001, 49(13): 2567
doi: 10.1016/S1359-6454(01)00062-3
|
11 |
Lederer M, Gröger V, Khatibi G, et al. Size dependency of mechanical properties of high purity aluminium foils [J]. Mater. Sci. Eng., 2010, 527A(3) : 590
|
12 |
Mahabunphachai S, Koç M. Investigation of size effects on material behavior of thin sheet metals using hydraulic bulge testing at micro/meso-scales [J]. Int. J. Mach. Tools Manuf., 2008, 48(9): 1014
doi: 10.1016/j.ijmachtools.2008.01.006
|
13 |
James L A. The effect of grain size upon the fatigue-crack propagation behavior of alloy 718 under hold-time cycling at elevated temperature [J]. Eng. Fract. Mech., 1986, 25(3): 305
doi: 10.1016/0013-7944(86)90127-X
|
14 |
Jiang R, Everitt S, Lewandowski M, et al. Grain size effects in a Ni-based turbine disc alloy in the time and cycle dependent crack growth regimes [J]. Int. J. Fatigue, 2014, 62: 217
doi: 10.1016/j.ijfatigue.2013.07.014
|
15 |
Zhao X Y, Liu Y, Wang Y, et al. Recrystallization behaviors of 316L stainless steel fiber with different diameters [J]. Mater. Sci. Eng. Powder Metall., 2013, 18(5): 631
|
|
赵秀云, 刘 咏, 王 岩 等. 不同丝径316L不锈钢纤维的再结晶行为 [J]. 粉末冶金材料科学与工程, 2013, 18(5): 631
|
16 |
Zhang C H, Xue S B, Xiao G Z, et al. Research status of micron rare metal foil [J]. Mater. Rep., 2020, 34(13): 13139
|
|
张聪惠, 薛少博, 肖桂枝 等. 微米级稀有金属箔材研究现状 [J]. 材料导报, 2020, 34(13): 13139
|
17 |
Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. Holland: Elsevier, 1995: 2
|
18 |
Beck P A, Kremer J C, Demer L. Grain growth in high purity aluminum [J]. Phys. Rev. J. Arch., 1947, 71(8): 555
|
19 |
Hu H, Rath B B. On the time exponent in isothermal grain growth [J]. Metall. Mater. Trans., 1970, 1B: 3181
|
20 |
Palai P, Prabhu N, Hodgson P D, et al. Grain growth and β-Mg17Al12 intermetallic phase dissolution during heat treatment and its impact on deformation behavior of AZ80 Mg-alloy [J]. J. Mater. Eng. Perform., 2014, 23(1): 77
doi: 10.1007/s11665-013-0722-9
|
21 |
Humphreys F J. Particle stimulated nucleation of recrystallization at silica particles in nickel [J]. Scripta Mater., 2000, 43(7): 591
doi: 10.1016/S1359-6462(00)00442-5
|
22 |
Nes E. The effect of a fine particle dispersion on heterogeneous recrystallization [J]. Acta Metall., 1976, 24(5): 391
doi: 10.1016/0001-6160(76)90059-6
|
23 |
McQueen H J, Evangelista E, Bowles J, et al. Hot deformation and dynamic recrystallization of Al-5Mg-0.8Mn alloy [J]. Metal. Sci., 1984, 18(8): 395
doi: 10.1179/030634584790419854
|
24 |
Humphreys F J. The nucleation of recrystallization at second phase particles in deformed aluminium [J]. Acta Metall., 1977, 25(11): 1323
doi: 10.1016/0001-6160(77)90109-2
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|