Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (7): 535-542    DOI: 10.11901/1005.3093.2022.417
ARTICLES Current Issue | Archive | Adv Search |
Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536
WANG Hao1,2, CUI Junjun1,2, ZHAO Mingjiu1,2()
1.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536. Chinese Journal of Materials Research, 2023, 37(7): 535-542.

Download:  HTML  PDF(11098KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure and crystallographic structure characteristics of as cold-rolled strip and foil with different thicknesses of GH3536 alloy after annealing was investigated by optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffractometer (XRD) to get an insight into the recrystallization and grain growth behavior. The results show that the cold rolled strip and foil of GH3536 alloy show a microstructure composed of elongated grains along the rolling directions, and its main phase was γ. The grain growth equations of the strip and foil with thicknesses of 200,100 and 50 μm annealed at 1050~1150℃ for 10~60 min were established respectively, and the relevant activation energies were acquired as follows: Q200 μm=800.34 kJ/mol, Q100 μm=609.50 kJ/mol and Q50 μm=314.79 kJ/mol. The activation energy of the thinner strip and foil was smaller, and the grain growth was more prone to occur. The main factors affecting the grain growth were related to deformation degree and precipitated particles.

Key words:  metallic materials      Ni-base superalloy      strip and foil      recrystallization      grain growth behaviors     
Received:  28 July 2022     
ZTFLH:  TG132.32  
Fund: National Natural Science Foundation of China and China Academy of Engineering Physics(U1730140)
Corresponding Authors:  ZHAO Mingjiu, Tel: (024)23975662, E-mail:mjzhao@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.417     OR     https://www.cjmr.org/EN/Y2023/V37/I7/535

ElementsCCrFeWMnCoMoNi
Content0.07321.5717.760.670.371.728.77Bal.
Table 1  Chemical composition of experimental GH3536 superalloy strip and foil (%, mass fraction)
Fig.1  Surface morphologies of cold-rolled state GH3536 superalloy strip and foil with thicknesses of 200 μm (a), 100 μm (b) and 50 μm (c)
Fig.2  Microstructure (a) and chemical analysis of matrix (b) and precipitation (c) with SEM-EDS of GH3536 superalloy with a thickness of 200 μm
ElementsNiCrFeMoCWSi
Matrix45.522.018.16.76.70.80.2
Particle19.116.48.041.311.23.20.9
Table 2  EDS analysis of matrix and particles on the GH3536 superalloy with a thickness of 200 μm (%, mass fraction)
Fig.3  XRD patterns of cold-rolled state GH3536 superalloy strip and foil with different thicknesses
Fig.4  Optical microstructures of GH3536 superalloy strip and foil annealing at 1050℃ (200 μm (a), 100 μm (b), 50 μm (c)), 1080℃ (200 μm (d), 100 μm (e), 50 μm (f)), 1100℃ (200 μm (g), 100 μm (h), 50 μm (i)), 1150℃ (200 μm (j), 100 μm (k), 50 μm (l))
Fig.5  XRD patterns of GH3536 superalloy strip and foil annealed at 1150℃ for 20 min with different thicknesses
Fig.6  Logarithmic plots of lnt-lnD of GH3536 superalloy strip and foil with thicknesses of 200 μm (a), 100 μm (b) and 50 μm (c)
Temperature / ℃200 μm100 μm50 μm
1050-D=0.583t0.3387D=0.736t0.2936
1080D=0.761t0.3495D=0.374t0.4241D=0.732t0.3204
1100D=1.412t0.2864D=3.962t0.1477D=1.348t0.2700
1150D=22.88t0.1601D=18.58t0.1724D=4.871t0.2785
Table 3  Grain growth equation of GH3536 superalloy strip and foil
Fig.7  Logarithmic plots of 1000/T-lnK of GH3536 superalloy strip and foil with thicknesses of 200 μm (a), 100 μm (b) and 50 μm (c) annealed at 1050~1150℃ and with a thickness of 200 μm (d) annealed at 1080~1150℃
Fig.8  BSE images of GH3536 superalloy with thick-nesses of 200 μm (a), 100 μm (b) and 50 μm (c) annealed at 1050℃
Fig.9  TEM morphologies and the electron diffraction patterns of the precipitates of GH3536 superalloy with a thickness of 100 μm annealed at 1100℃ (a) and 1150℃ (b)
1 Lai G Y. An investigation of the thermal stability of a commercial Ni-Cr-Fe-Mo alloy (hastelloy alloy X) [J]. Metall. Trans., 1978, 9A: 827
2 Aghaie-Khafri M, Golarzi N. Forming behavior and workability of Hastelloy X superalloy during hot deformation [J]. Mater. Sci. Eng., 2008, 486A: 641
3 Osada T, Nagashima N, Gu Y F, et al. Factors contributing to the strength of a polycrystalline nickel-cobalt base superalloy [J]. Scripta Mater., 2011, 64(9): 892
doi: 10.1016/j.scriptamat.2011.01.027
4 Pollock T M, Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties [J]. J. Propul. Power., 2006, 22(2): 361
5 Williams J C, Starke E A. Progress in structural materials for aerospace systems [J]. Acta Mater., 2003, 51(19): 5775
doi: 10.1016/j.actamat.2003.08.023
6 Chen W, Zhang Y, Ding Y, et al. Size effect of tensile property for ultrathin 304 stainless steel [J]. Int. J. Plast. Eng., 2014, 21(6): 71
7 Guo B, Zhou J, Shan D B, et al. Size effects of yield strength of brass foil in tensile test [J]. Acta Metall. Sin., 2008, 44(4): 419
8 Stölken J S, Evans A G. A microbend test method for measuring the plasticity length scale [J]. Acta Mater., 1998. 46(14): 5109
doi: 10.1016/S1359-6454(98)00153-0
9 Li H Z, Dong X H, Wang Q, et al. Size effects of CuZn37 brass foil in microforming [J]. Mater. Sci. Technol., 2011, 19(4): 15
李河宗, 董湘怀, 王 倩 等. CuZn37黄铜板料微塑性成形中的尺寸效应研究 [J]. 材料科学与工艺, 2011, 19 (4):15
10 Fu H H, Benson D J, Meyers M A. Analytical and computational description of effect of grain size on yield stress of metals [J]. Acta Mater., 2001, 49(13): 2567
doi: 10.1016/S1359-6454(01)00062-3
11 Lederer M, Gröger V, Khatibi G, et al. Size dependency of mechanical properties of high purity aluminium foils [J]. Mater. Sci. Eng., 2010, 527A(3) : 590
12 Mahabunphachai S, Koç M. Investigation of size effects on material behavior of thin sheet metals using hydraulic bulge testing at micro/meso-scales [J]. Int. J. Mach. Tools Manuf., 2008, 48(9): 1014
doi: 10.1016/j.ijmachtools.2008.01.006
13 James L A. The effect of grain size upon the fatigue-crack propagation behavior of alloy 718 under hold-time cycling at elevated temperature [J]. Eng. Fract. Mech., 1986, 25(3): 305
doi: 10.1016/0013-7944(86)90127-X
14 Jiang R, Everitt S, Lewandowski M, et al. Grain size effects in a Ni-based turbine disc alloy in the time and cycle dependent crack growth regimes [J]. Int. J. Fatigue, 2014, 62: 217
doi: 10.1016/j.ijfatigue.2013.07.014
15 Zhao X Y, Liu Y, Wang Y, et al. Recrystallization behaviors of 316L stainless steel fiber with different diameters [J]. Mater. Sci. Eng. Powder Metall., 2013, 18(5): 631
赵秀云, 刘 咏, 王 岩 等. 不同丝径316L不锈钢纤维的再结晶行为 [J]. 粉末冶金材料科学与工程, 2013, 18(5): 631
16 Zhang C H, Xue S B, Xiao G Z, et al. Research status of micron rare metal foil [J]. Mater. Rep., 2020, 34(13): 13139
张聪惠, 薛少博, 肖桂枝 等. 微米级稀有金属箔材研究现状 [J]. 材料导报, 2020, 34(13): 13139
17 Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. Holland: Elsevier, 1995: 2
18 Beck P A, Kremer J C, Demer L. Grain growth in high purity aluminum [J]. Phys. Rev. J. Arch., 1947, 71(8): 555
19 Hu H, Rath B B. On the time exponent in isothermal grain growth [J]. Metall. Mater. Trans., 1970, 1B: 3181
20 Palai P, Prabhu N, Hodgson P D, et al. Grain growth and β-Mg17Al12 intermetallic phase dissolution during heat treatment and its impact on deformation behavior of AZ80 Mg-alloy [J]. J. Mater. Eng. Perform., 2014, 23(1): 77
doi: 10.1007/s11665-013-0722-9
21 Humphreys F J. Particle stimulated nucleation of recrystallization at silica particles in nickel [J]. Scripta Mater., 2000, 43(7): 591
doi: 10.1016/S1359-6462(00)00442-5
22 Nes E. The effect of a fine particle dispersion on heterogeneous recrystallization [J]. Acta Metall., 1976, 24(5): 391
doi: 10.1016/0001-6160(76)90059-6
23 McQueen H J, Evangelista E, Bowles J, et al. Hot deformation and dynamic recrystallization of Al-5Mg-0.8Mn alloy [J]. Metal. Sci., 1984, 18(8): 395
doi: 10.1179/030634584790419854
24 Humphreys F J. The nucleation of recrystallization at second phase particles in deformed aluminium [J]. Acta Metall., 1977, 25(11): 1323
doi: 10.1016/0001-6160(77)90109-2
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[13] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[14] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
[15] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
No Suggested Reading articles found!