Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (7): 502-510    DOI: 10.11901/1005.3093.2022.182
ARTICLES Current Issue | Archive | Adv Search |
Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy
QIN Heyong1,2, LI Zhentuan1,2(), ZHAO Guangpu1,2, ZHANG Wenyun1,2, ZHANG Xiaomin1,2
1.High-Temperature Materials Institute, Central Iron and Steel Research Institute, Beijing 100081, China
2.CISRI-GAONA Co., Ltd., Beijing 100081, China
Cite this article: 

QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy. Chinese Journal of Materials Research, 2023, 37(7): 502-510.

Download:  HTML  PDF(12683KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of different solution temperatures on the micro-substructure and γ' phase of GH4742 superalloy were studied by EBSD and TEM, and the mechanical properties of GH4742 superalloy were measured. The results show that the proportion of static recrystallization of matrix increased with increasing solution temperature in the range of 1080℃ to 1120℃, which resulted in the decrease of the proportion of low-angle grain boundaries from 13.2% to 3.2%; Meanwhile, the grains were significantly coarsened with a size increase from 11.0 μm to 111.6 μm, the proportion of Σ3 twin boundary increased from 13.2% to 58.6%. The volume fraction of the primary γ' phase in the matrix decreased evidently with the increase of the solution temperature, while the size of the primary γ' phase increased, and the volume fraction and size of the secondary γ' phase increased continuously, and that of the tertiary γ' phase changed little. The variety of strengthening contribution of γ' phase was small by different solution temperatures, and the strengthening increment caused by grain boundary strengthening plays determine role in the strength of the matrix. The room temperature strength of GH4742 alloy decreased dramatically with the increase of solution temperature, while the high temperature strength and rupture fracture time increased markedly. The GH4742 alloy solution treated at 1100℃ exhibits good mechanical properties at either room temperature or high temperature.

Key words:  metallic materials      GH4742 superalloy      solution temperature      micro-substructure      mechanical properties     
Received:  06 April 2022     
ZTFLH:  TG146.1  
Fund: National Science and Technology Major Project(2017-VI-0018-0090)
Corresponding Authors:  LI Zhentuan, Tel: 18813051277, E-mail: lizhentuan@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.182     OR     https://www.cjmr.org/EN/Y2023/V37/I7/502

ComponentCSiMnPSCrMoCoAlTiNb
GH47420.050.039<0.005<0.005<0.00413.974.88102.712.802.60
Table 1  Chemical composition of GH4742 superalloy (mass fraction, %)
Fig.1  Stress-strain curves of GH4742 superalloy under different solution temperature (a) Room temperature; (b) 650℃
Fig.2  Effect of solution temperature on rupture properties of GH4742 superalloy (a) creep rupture time; (b) plasticity index
Fig.3  EBSD grain boundary distribution map of the sample under different process (a) forged; (b) 1080℃+780℃; (c) 1100℃+780℃; (d) 1120℃+780℃
GB/%CSL /%Grain size /μm
HAGBLAGBCSL Σ3CSL Σ9CSL Σ27
Forged79.920.110.20.520.1910.7
108081.318.713.20.760.1911.0
110086.613.431.51.560.3520.6
112096.83.258.61.510.22111.2
Table 2  Proportion of EBSD grain boundary and grain size under different process
Fig.4  Morphology of γ' phase in GH4742 alloy under different process conditions (a) forged; (b) 1080℃+780℃; (c) 1100℃+780℃; (d) 1120℃+780℃
Fig.5  Effects of different solution temperatures on volume fraction and size distribution of γ' phase in GH4742 superalloy (a) Volume fraction of γ' phase; (b) Size distribution of γ' phase
Fig.6  Dislocation configuration in the matrix under different solution temperatures (a) dislocation wall, 1080℃; (b) dislocation nets, 1080℃; (c) dislocation wall, 1100℃; (d) dislocation nets, 1100℃
Fig.7  Schematic diagram of interaction between dislocation and γ' particles under different strengthening mechanisms (a) weak pair-coupling strengthening; (b) strong pair-coupling strengthening; (c) Orowan bypassing strengthening
Fig.8  Effect of anti-phase boundary energy and volume fraction on γ' phase critical radius of different strengthening mechanisms (a) Critical transformation radius of strong-weak coupling; (b) Critical transformation radius of shearing-bypassing

Strengthening

mechanism

1080 ℃1100 ℃1120 ℃
r / nmf / %Δσ / MPar / nmf / %Δσ / MPar / nmf / %Δσ/ MPa
γ'Orowan bypasing415.46.954.0864.52.715.0---
γ'Strong-coupling93.010.6218.0106.215.9251.1152.918.0224.0
γ'Strong-coupling15.819.5347.815.918.4345.915.919.0348.3
ΔσT572598572
Table 3  Size, volume fraction and strengthening increment of γ' phase under different process conditions
1 Kong W, Wang Y, Chen Y, et al. Investigation of uniaxial ratcheting fatigue behaviours and fracture mechanism of GH742 superalloy at 923 K [J]. Mater. Sci. Eng. A, 2022, 831: 142173.
doi: 10.1016/j.msea.2021.142173
2 Zhang X S, Wang L, Liu Y, et al. Effect of aging treatment at 750℃ on fatigue crack propagation behavior of GH4742 superalloy [J]. Chin. J. Mater. Res., 2019, 33(10): 721
doi: 10.11901/1005.3093.2019.138
张星硕, 王 磊, 刘 杨 等. 750℃时效对GH4742合金疲劳裂纹扩展行为的影响 [J]. 材料研究学报, 2019, 33(10): 721
doi: 10.11901/1005.3093.2019.138
3 Zhou G, Li J L, Men Y, et al. Dynamic recrystallization behavior of GH4742 superalloy used in turbine disk [J]. Rare Met. Mater. Eng., 2021, 50(4): 1318.
周 舸, 李鉴霖, 门 月 等. 涡轮盘用GH4742合金动态再结晶行为 [J]. 稀有金属材料与工程, 2021, 50(4): 1318
4 Lu X, Deng Q, Du J, et al. Effect of slow cooling treatment on microstructure of difficult deformation GH4742 superalloy [J]. J. Alloys Compd., 2009, 477(1-2): 100
doi: 10.1016/j.jallcom.2008.10.088
5 Long Z D, Deng Q, LIN P, et al. Effects of heat treatment on micros tructure and mech anical pro per ties of GH742 superalloy [J]. J. Mater. Eng., 1999, (03), 41
龙正东, 邓 群, 林 平 等. 热处理对 GH742 合金组织和力学性能的影响 [J]. 材料工程, 1999, (03), 41
6 Shu D L. Mechanical Properties of Engineering Materials [M]. Beijing: Mechanical Industry Press, 2007: 163.
束德林. 工程材料力学性能 [M]. 北京: 机械工业出版社, 2007: 163
7 Huang Q X, Li H K. Superalloy [M]. Beijing: Metallurgy Industry Press, 2000, 294
黄乾晓, 李汉康. 高温合金 [M]. 北京: 冶金工业出版社, 2000: 294
8 Kim Y K, Kim D, Kim H K, et al. A numerical model to predict mechanical properties of Ni-base disk superalloys [J]. Int. J. Plast., 2018, 110: 123
doi: 10.1016/j.ijplas.2018.06.011
9 Pradhan S K, Mandal S, Athreya C N, et al. Influence of processing parameters on dynamic recrystallization and the associated annealing twin boundary evolution in a nickel base superalloy [J]. Mater. Sci. Eng. A, 2017, 700: 49
doi: 10.1016/j.msea.2017.05.109
10 Raj B. Materials and manufacturing technologies for sodium cooled fast reactors and associated fuel cycle: innovations and maturity [J]. Energy Procedia, 2011, 7: 186
doi: 10.1016/j.egypro.2011.06.025
11 Azarbarmas M, Aghaie-Khafri M, Cabrera J M, et al. Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718 [J]. Mater. Sci. Eng. A, 2016, 678: 137
doi: 10.1016/j.msea.2016.09.100
12 Kozar R, Suzuki A, Milligan W, et al. Strengthening mechanisms in polycrystalline multimodal nickel-base superalloys [J]. Mater. Trans. A., 2009, 40(7): 1588
13 Galindo-Nava E I, Connor L D, Rae C M F. On the prediction of the yield stress of unimodal and multimodal γ' Nickel-base superalloys [J]. Acta Mater., 2015, 98: 377
doi: 10.1016/j.actamat.2015.07.048
14 Hüther W, Reppich B. Interaction of dislocations with coherent, stress-free, ordered particles [J]. International Journal of Materials Research, 1978, 69(10): 628
doi: 10.1515/ijmr-1978-691003
15 Reed R C, The superalloys : fundamentals and applications [M]. Cambridge university press 2008
16 Yong Q L. Secondary Phases in Steels [M]. Beijing: Metallurgy Industry Press, 2006: 46
雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 46
17 Wang J S, Mulholland M, Olson G, et al. Prediction of the yield strength of a secondary-hardening steel [J]. Acta Mater., 2013, 61(13): 4939
doi: 10.1016/j.actamat.2013.04.052
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!