Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (6): 417-422    DOI: 10.11901/1005.3093.2021.636
ARTICLES Current Issue | Archive | Adv Search |
Creep Microstructure Damage and Influence on Re-creep Behavior for a Nickel-based Single Crystal Superalloy
ZHANG Min1, ZHANG Siqian1(), WANG Dong2, CHEN Lijia1
1.School of Material Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

ZHANG Min, ZHANG Siqian, WANG Dong, CHEN Lijia. Creep Microstructure Damage and Influence on Re-creep Behavior for a Nickel-based Single Crystal Superalloy. Chinese Journal of Materials Research, 2023, 37(6): 417-422.

Download:  HTML  PDF(8905KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Creep tests of Nickel-based single crystal superalloy DD413 were carried out by constant loads of 980℃/200 MPa and 870℃/430 MPa, while which then were terminated at plastic strain just reaches 0.2%, 0.5% and 1% respectively, so that to acquire the microstructure of the alloy by different creep damage states. Later on, the pre-strained alloys were further subjected to re-creep test again, so as to acquire their residual creep properties and to establish the relationship between different degraded microstructure and creep properties. Meanwhile the microstructure damage characteristics of DD413 alloy under thermal-mechanical coupling were simulated and quantitatively characterized. The results show that the degradated damage of DD413 alloy structure mainly includes the decrease of γ' phase volume fraction and the increase of γ' phase rafting degree. The higher the creep temperature, the more serious the microstructure damage, and the worse the alloy's re-creep performance. Compared with γ' phase rafting, the decrease of γ' phase volume fraction has little effect on the creep properties of the alloy.

Key words:  metallic materials      nickel-based single crystal superalloy      creep damage      quantified      γ' phase rafting     
Received:  12 November 2021     
ZTFLH:  TG132.3  
Fund: National Natural Science Foundation of China(52071219)
Corresponding Authors:  ZHANG Siqian, Tel: 13700022372, E-mail: sqzhang@alum.imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.636     OR     https://www.cjmr.org/EN/Y2023/V37/I6/417

Fig.1  Microstructure of the DD413 Single-crystal superalloy after heat treatment
Fig.2  Creep curvrs of the DD413 Single-crystal superalloy at 980℃/200 MPa and 870℃/430 MPa
Fig.3  Microstructure of dendrite region the DD413 single-crystal superalloy at cross sections (a) 0.2% at 980℃/200 MPa, (b) 0.2% at 870℃/430 MPa, (c) 0.5% at 980℃/200 MPa, (d) 0.5% at 870℃/430 MPa, (e) 1% at 980℃/200 MPa, (f) 1% at 870℃/430 MPa
SpecimenVf / %Ω / %D / μmW / μm
SHT52.2±1.200.291±0.0630.099±0.031
980℃/200 MPa/0.2%46.9±1.40.240±0.0830.364±0.1030.168±0.004
980℃/200 MPa/0.5%44.2±0.20.298±0.0840.346±0.0070.188±0.051
980℃/200 MPa/1.0%41.5±1.20.561±0.0590.337±0.0760.265±0.072
870℃/430 MPa/0.2%45.8±1.600.328±0.0860.112±0.046
870℃/430 MPa/0.5%46.6±0.50.005±0.0090.327±0.0820.128±0.039
870℃/430 MPa/1.0%44.9±0.60.112±0.1540.314±0.0860.152±0.049
Table 1  Quantitative statistics of microstructure parameters of the DD413 single-crystal superalloy after various strain conditions
Fig.4  Microstructure of dendrite region the DD413 single-crystal superalloy at longitudinal sections (a) 0.2% at 980℃/200 MPa, (b) 0.2% at 870℃/430 MPa, (c) 0.5% at 980℃/200 MPa, (d) 0.5% at 870℃/430 MPa, (e) 1% at 980℃/200 MPa, (f) 1% at 870℃/430 MPa
Fig.5  Creep curves of the DD413 single-crystal superalloy after different pre-strains (a) 980℃/200 MPa, (b) 870℃/430 MPa
1 Zhang C H, Hu W B, Wen Z X, et al. Creep residual life prediction of a nickel-based single crystal superalloy based on microstructure evolution [J]. Mater. Sci. Eng., 2019, 756A: 108
2 Pollock T M, Tin S. Nickel-based superalloy for advanced turbine engines: chemistry, microtrucyure and properties [J]. J. Propul. Power, 2006, 22: 361
doi: 10.2514/1.18239
3 Li G, Zhang S Q, Zhang Z P, et al. Creep deformation behavior of three nickel-based single crystal superalloys with 15°deviation from <001> orientation at medium temperature [J]. Chin. J. Mater. Res., 2019, 33(12): 892
李 钢, 张思倩, 张宗鹏 等. 偏离<001>取向15°的三种镍基单晶高温合金试样的中温蠕变变形行为 [J]. 材料研究学报, 2019, 33(12): 892
4 Wang X M, Wang X Z, Wang Y, et al. The role of microstructural morphology on creep properties of a [001] oriented nickel-base single crystal superalloy [J]. Materialwissenschaft and Werkstofftechnik, 2018, 49(10): 1151
doi: 10.1002/mawe.201700113
5 Huang Y S, Wang X G, Cui C Y, et al. The effect of coarsening of γ' precipitate on creep properties of Ni-based single crystal superalloys during long-term aging [J]. Mater. Sci. Eng. A, 2020, 773: 138886.1
6 Shi Q Y, Huo J J, Zhong Y R, et al. Influence of Mo and Ru additions on the creep behavior of Ni-based single crystal superalloys at 1100℃ [J]. Mater. Sci. Eng. A, 2018, 725: 148
doi: 10.1016/j.msea.2018.04.026
7 Sakaguchi M, Okazaki M. Distinctive role of plastic and creep strain in directional coarsening of a Ni-base single crystal superalloy [J]. Mater. Sci. Eng. A, 2018, 710: 121
doi: 10.1016/j.msea.2017.10.085
8 Tang Y, Huang M, Xiong J, et al. Evolution of superdislocation structures during tertiary creep of a nickel-based single-crystal superalloy at high temperature and low stress [J]. Acta. Mater., 2017, 126: 336
doi: 10.1016/j.actamat.2016.12.072
9 Wu R H, Zhao Y S, Liu Y F, et al. High temperature creep mechanisms of a single crystal superalloy: A phase-field simulation and microstructure characterization [J]. Progress in Natural Science, 2020, 30(3): 366
doi: 10.1016/j.pnsc.2020.05.002
10 Fu C, Chen Y D, He S L, et al. ICME framework for damage assessment and remaining creep life prediction of in-service turbine blades manufactured with Ni-based superalloys [J]. Integrating Materials and Manufacturing Innovation, 2019, 8(4): 509
doi: 10.1007/s40192-019-00161-4
11 Tian S G, Li Q Y, SU Y, et al. Microstructure evolution and creep behavior of a [111] oriented single crystal nickel-based superalloy during tensile creep [J]. Mater. Sci. Eng., 2013, 118(4): 1407
12 Sujata M, Madan M, Raghavendra K, et al. Identification of failure mechanisms in nickel base superalloy turbine blades through microstructural study [J]. Engineering Failure Analysis, 2010, 17(6): 1436
doi: 10.1016/j.engfailanal.2010.05.004
13 Nabarro F R N. Rafting in superalloys [J]. Metall. Mater. Trans., 1996, 27(3): 513
doi: 10.1007/BF02648942
14 Vardar N, Ekerim A. Failure analysis of gas turbine blades in a thermal power plant [J]. Engineering Failure Analysis, 2007, 14(4): 743
doi: 10.1016/j.engfailanal.2006.06.001
15 Yuan X F, Zheng Y R, Feng Q, et al. Study on the abnormal phenomenon of high temperature durability of K465 alloy cast by equiaxed crystal [A]. Abstract collection of the 13th China Superalloy Annual Conference[C]. Beijing, 2015
袁晓飞, 郑运荣, 冯 强 等. 等轴晶铸造K465合金高温持久性能反常现象的研究 [A]. 第十三届中国高温合金年会摘要文集[C]. 北京, 2015
16 Yuan X F, Song J X, Zheng Y R, et al. Quantitative microstructural evolution and corresponding stress rupture property of K465 superalloy [J]. Mater. Sci. Eng. A, 2016, 651: 734
doi: 10.1016/j.msea.2015.11.026
17 Song J X, Yuan X F, Feng Q, et al. Abnormal stress rupture property in K465 superalloy caused by microstructural degradation at 975℃/225 MPa [J]. Journal of Alloys and Compounds, 2016, 662: 583
doi: 10.1016/j.jallcom.2015.12.086
18 Feng Q, Tong J Y, Zheng Y R, et al. Damage and repair of gas turbine blade in sevice [J]. China Material Progress, 2012, 31(012): 21
冯 强, 童锦艳, 郑运荣 等. 燃气涡轮叶片的服役损伤与修复 [J]. 中国材料进展, 2012, 31(012): 21
19 Liu X G, Li H, Feng Q, et al. Effect of thermal coupling on creep microsture evolution of a fourth generation Nickel-base single crystal superalloy at 1100℃ [J]. Acta Metall. Sin., 2021, 57(02): 205
刘心刚, 李 辉, 冯 强 等. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响 [J]. 金属学报, 2021, 57(02): 205
20 Chen Y D, Zheng Y R, Feng Q, et al. Evaluation method of service temperature field of DZ125 directionally solidified high-pressure turbine blade based on microstructure evolution [J]. Acta Metall. Sin., 2016, 52(12): 1545
陈亚东, 郑运荣, 冯 强 等. 基于微观组织演变的DZ125定向凝固高压涡轮叶片服役温度场的评估方法研究 [J]. 金属学报, 2016, 52(12): 1545
21 Tong J Y, Ding X F, Wang M L, et al. Assessment of service induced degradation of microstructure and properties in turbine blades made of GH4037 alloy [J]. Journal of Alloys and Compounds, 2016, 657: 777
doi: 10.1016/j.jallcom.2015.10.071
22 Tong J Y, Ding X F, Wang M L, et al. Evaluation of a serviced turbine blade made of GH4033 wrought superalloy [J]. Mater. Sci. Eng. A, 2014, 618: 605
doi: 10.1016/j.msea.2014.09.025
23 Underwood E E. Quantitative Stereology [M]. Reading, Mass.: Addison-Wesley Publishing Company, 1970
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!