Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (6): 423-431    DOI: 10.11901/1005.3093.2022.167
ARTICLES Current Issue | Archive | Adv Search |
Effect of Ta/Zr on High-temperature Microstructural Stability of Warm-rolled Sheets of Fe-Cr-Al-Mo-Nb Alloy
LI Qiao1, NIU Ben1, ZHANG Ruiqian2, LIU Huiqun3, LIN Guoqiang1, WANG Qing1()
1.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education) & School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2.Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
3.School of Materials Science and Engineering, Central South University, Changsha 410083, China
Cite this article: 

LI Qiao, NIU Ben, ZHANG Ruiqian, LIU Huiqun, LIN Guoqiang, WANG Qing. Effect of Ta/Zr on High-temperature Microstructural Stability of Warm-rolled Sheets of Fe-Cr-Al-Mo-Nb Alloy. Chinese Journal of Materials Research, 2023, 37(6): 423-431.

Download:  HTML  PDF(23090KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of addition of Ta and Zr on the evolution of the second phase precipitation and microhardness of Fe-Cr-Al-Mo-Nb alloys was investigated. For this purpose, a series of alloy ingots were prepared by vacuum arc melting in high purity Ar gas and homogenized at 1473 K/2 h. After solid solution treatment, the four ingots were hot rolled to produce plates, which then were annealed at 1473 K for 10 min, and then warm rolled successively at 1073 K and 873 K to obtain metal sheets of 2 mm thick, followed by aging treatment at 873 K/24 h and heat treatment at different temperatures. After the final heat treatments, the alloy sheets were characterized by means of XRD, OM, SEM, and EPMA. while their mechanical property was examined by material testing machine. The results show that the aging alloys are mainly composed of two Laves phases with different sizes, and the addition of Zr promoted the precipitation of fine particles, while inhibited the precipitation of coarse particles. With the increase of the heat treatment temperature, the second phase particles are significantly coarsened and redissolved. After heat treatment at 1473 K/1 h, the Zr and Ta/Zr modified alloys exhibited high microstructural stability, but significantly inhibited the re-solvation of the second phase particles, thereby resulted in that the two alloys presented second phase with volume fraction of 0.1% and 0.2% respectively. The addition of Zr also significantly inhibited the coarsening of grains at high temperatures, correspondingly which was associated with the pinning of grain boundaries by Laves phase particles.

Key words:  metal materials      Fe-Cr-Al alloys      alloying      microstructural stability      the second phase precipitation     
Received:  25 March 2022     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(U1867201)
Corresponding Authors:  WANG Qing, Tel: (0411)84708615, E-mail: wangq@dlut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.167     OR     https://www.cjmr.org/EN/Y2023/V37/I6/423

AlloyFeCrAlMoNbTaZr
No.178.6113.554.752.081.01--
No.278.3613.514.732.080.670.65-
No.378.6113.554.732.080.90-0.11
No.478.2813.504.732.080.450.870.11
Table 1  Chemical compositions of the designed Fe-Cr-Al-M alloys (%, mass faction)
Fig.1  OM (a, b) and back-scattered electron images (c~f) of the rolled state of designed alloys
Fig.2  XRD pattern of the aged alloys at 873 K for 24 h
Fig.3  Back-scattered electron image of the designed alloys at 873 K for 24 h (a) No.1 alloy, (b) No.2 alloy, (c) No.3 alloy and (d) No.4 alloy
Fig.4  OM of the designed alloys after re-treat at different temperatures 1: 1273 K/1 h, 2: 1373 K/1 h, 3: 1473 K/1 h; (a) No.1 alloy, (b) No.2 alloy, (c) No.3 alloy, and (d) No.4 alloy
Fig.5  Back-scattered electron images of designed alloys after re-treat at different temperatures for 1 h 1: 1273 K/1 h, 2: 1373 K/1 h, 3: 1473 K/1 h; (a) No.1 alloy, (b) No.2 alloy, (c) No.3 alloy, and (d) No.4 alloy
Fig.6  Grain size (a), volume fraction of second phase particles (b), second phase particle size (c), and microhardness (d) of Fe-Cr-Al series alloys in different states
Fig.7  Element distributions in the re-treated No.2 alloy at 1473 K for 1 h mapped by EPMA
M

D0

/ m2·s-1

QM

/ kJ·mol-1

D873 K

/ m2·s-1

D1473 K

/ m2·s-1

Zr1.20×10-6240.844.66×10-213.45×10-15
Ta2.35×10-5220.931.42×10-183.44×10-13
Nb1.27×10-5224.005.02×10-191.45×10-13
Mo1.48×10-2282.601.98×10-191.48×10-12
Table 2  Diffusion coefficients of element M(M=Mo, Nb, Ta, Zr) in the BCC ferrite matrix at different temperatures calculated by the equation of DM =D0 ×exp(-QM /RT)
1 George N M, Terrani K A, Powers J J. Neutronic analysis of candidate accident-tolerant iron alloy cladding concepts [J]. Trans. Am. Nucl. Soc., 2013, 109(2): 121
2 Pint B A, Terrani K A, Brady M P, et al. High temperature oxidation of fuel cladding candidate materials in steam-hydrogen environments [J]. J. Nucl. Mater., 2013, 440(1-3): 420
doi: 10.1016/j.jnucmat.2013.05.047
3 Wu X, Kozlowski T, Hales J D. Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions [J]. Ann. Nucl. Energy., 2015, 85: 763
doi: 10.1016/j.anucene.2015.06.032
4 George N M, Terrani K, Powers J, et al. Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors [J]. Ann. Nucl. Energy., 2015, 75: 703
doi: 10.1016/j.anucene.2014.09.005
5 Cheng T, Keiser J R, Brady M P, et al. Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure [J]. J. Nucl. Mater., 2012, 427(1-3): 396
doi: 10.1016/j.jnucmat.2012.05.007
6 Yamamoto Y, Pint B A, Terrani K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors [J]. J. Nucl. Mater., 2015, 467: 703
doi: 10.1016/j.jnucmat.2015.10.019
7 Sun J D, Li J L, Yu H Y, et al. Microstructural stability of low-cost Ni-base superalloys with a high volume fraction of cuboidal γ' nanoprecipitates [J]. Mater. Sci. Eng. A, 2022, 833: 142550
doi: 10.1016/j.msea.2021.142550
8 Li C L, Ma Y, Hao J M, et al. Microstructures and mechanical properties of body-centered-cubic (Al,Ti)0.7(Ni, Co, Fe, Cr)5 high entropy alloys with coherent B2/L21 nanoprecipitation [J]. Mater. Sci. Eng. A, 2018, 737: 286
doi: 10.1016/j.msea.2018.09.060
9 Ma Y, Wang Q, Jiang B B, et al. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni, Co, Fe, Cr)14 compositions [J]. Acta Mater., 2018, 147: 213
doi: 10.1016/j.actamat.2018.01.050
10 Capdevila C, Chao J, Jiménez J A, et al. Effect of nanoscale precipitation on strengthening of ferritic ODS Fe-Cr-Al alloy [J]. Mater. Sci. Technol., 2013, 29(10): 1179
doi: 10.1179/1743284713Y.0000000215
11 Sun Z Q, Edmondson P D, Yamamoto Y. Effects of Laves phase particles on recovery and recrystallization behaviors of Nb-containing FeCrAl alloys [J]. Acta Mater., 2018, 144: 716
doi: 10.1016/j.actamat.2017.11.027
12 Shassere B, Yamamoto Y, Poplawsky J, et al. Heterogeneous creep deformations and correlation to microstructures in Fe-30Cr-3Al alloys strengthened by an Fe2Nb Laves phase [J]. Metall. Mater. Trans. A, 2017, 48(10): 4598
doi: 10.1007/s11661-017-4274-8
13 Sun Z Q, Bei H B, Yamamoto Y. Microstructural control of FeCrAl alloys using Mo and Nb additions [J]. Mater. Charact., 2017, 132: 126
doi: 10.1016/j.matchar.2017.08.008
14 Anjum M W, Wen D H, Wang Q, et al. Influence of Ta/Zr minor-alloying on the high-temperature microstructural stability of cladding Fe-Cr-Al ferritic stainless steels [J]. J. Nucl. Mater., 2019, 522: 19
doi: 10.1016/j.jnucmat.2019.05.008
15 Nitta H, Yamamoto T, Kanno R, et al. Diffusion of molybdenum in α-iron [J]. Acta Mater., 2002, 50(16): 4117
doi: 10.1016/S1359-6454(02)00229-X
16 Oono N, Nitta H, Iijima Y. Diffusion of niobium in α-iron [J]. Mate. Trans., 2003, 44(10): 2078
17 Huang S, Worthington D L, Asta M, et al. Calculation of impurity diffusivities in α-Fe using first-principles methods [J]. Acta Mater., 2010, 58(6): 1982
doi: 10.1016/j.actamat.2009.11.041
18 Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362(6417): 933
doi: 10.1126/science.aas8815 pmid: 30467166
19 He F, Chen D, Han B, et al. Design of D022 superlattice with superior strengthening effect in high entropy alloys [J]. Acta Mater., 2019, 167: 275
doi: 10.1016/j.actamat.2019.01.048
20 Zhou N, Jiang S, Huang T, et al. Single-phase high-entropy intermetallic compounds (HEICs): bridging high-entropy alloys and ceramics [J]. Sci. Bull., 2019, 64(12): 856
doi: 10.1016/j.scib.2019.05.007 pmid: 36659675
21 Mayrhofer P H, Kirnbauer A, Ertelthaler P, et al. High-entropy ceramic thin films; A case study on transition metal diborides [J]. Scr. Mater., 2018, 149: 93
doi: 10.1016/j.scriptamat.2018.02.008
22 Zeng Y, Wang D, Xiong X, et al. Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000℃ [J]. Nat. Commun., 2017, 8(1): 1
doi: 10.1038/s41467-016-0009-6
23 Hsieh M H, Tsai M H, Shen W J, et al. Structure and properties of two Al-Cr-Nb-Si-Ti high-entropy nitride coatings [J]. Surf. Coat. Technol., 2013, 221: 118
doi: 10.1016/j.surfcoat.2013.01.036
24 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
doi: 10.1016/j.actamat.2016.08.081
25 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345(6201): 1153
doi: 10.1126/science.1254581 pmid: 25190791
[1] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[2] XIAO Han, ZHOU Yuhang, CHEN Lei, ZHANG Xiongchao, CUI Yunxin, XIONG Chi. Effect of Isothermal Time on Microstructure and Properties of Thixo-extruded Tin Bronze Bushing[J]. 材料研究学报, 2022, 36(9): 641-648.
[3] HE Yufeng, WANG Li, WANG Dong, WANG Shaogang, LU Yuzhang, GU Ashan, SHEN Jian, ZHANG Jian. Effect of Hot Isostatic Pressing on Microstructure of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2022, 36(9): 649-659.
[4] ZHANG Shuqi, DONG Dandan, WAN Peng, WANG Qing, DONG Chuang, YANG Rui. Composition Design of Alumina-Forming Austenitic Stainless Steels Based on Cluster-Plus-Glue-Atom Model[J]. 材料研究学报, 2022, 36(5): 353-364.
[5] LIU Chao, WEN Feng, CHEN Jiqiang, ZHAO Hongjin, LI Qilong, ZHOU Jianpeng. Effect of Sc and Zr Addition and Annealing Treatment on Mechanical Properties of As-cast Al-Si Alloy[J]. 材料研究学报, 2021, 35(2): 93-100.
[6] GUI Weimin, LIU Yi, ZHANG Xiaotian, HE Liangliang, WANG Ye, WANG Yuandong, HE Erkang, WANG Mengmeng. Effect of Rare Earth Addition on Microstructure, Mechanical Property and Nitriding Performance of a Medium Carbon Steel[J]. 材料研究学报, 2021, 35(1): 72-80.
[7] LI Dongmei, TAN Liming, ZHAO Qing, XIE Hanxi, YU Peng, XIA Lei. Effect of Dy Addition on Glass-forming Ability and Mechanical Properties of Cu50Zr46Al4 Bulk Metallic Alloy[J]. 材料研究学报, 2020, 34(8): 605-610.
[8] WANG Jingzhong, DING Kailun, YANG Xirong, LIU Xiaoyan. Thermodynamical Explanation for Abnormal Dynamic Softening Rate of Ti-62A Alloy and Constitutive Equation of Strain Compensation[J]. 材料研究学报, 2020, 34(6): 401-409.
[9] GU Wei, ZHANG Zhijian, YANG Jiaquan. Effect of Preparation Process on Magnetic Properties of Amorphous Magnetic Powder Cores[J]. 材料研究学报, 2020, 34(4): 291-298.
[10] CHEN Feng, ZHOU Yang, CHEN Yannan, LIN Zongling, QIN Fengxiang. Fabrication of Nano-porous Co by Dealloying for Supercapacitor and Azo-dye Degradation[J]. 材料研究学报, 2020, 34(12): 905-914.
[11] Nan GAO, Yan LONG, Haiyan PENG, Weihua ZHANG, Liang PENG. Microstructure and Mechanical Properties of TiVNbTa Refractory High-Entropy Alloy Prepared by Powder Metallurgy[J]. 材料研究学报, 2019, 33(8): 572-578.
[12] CHAI Feng,SHI Zhongran,YANG Caifu,WANG Jiaji. Effect of Nitrogen on Microstructure and Mechanical Properties for Simulated CGHAZ of Normalized Vanadium Micro-alloyed Steel[J]. 材料研究学报, 2019, 33(11): 848-856.
[13] Zhenhua WANG, Donghui WEN, Yang LV, Jiamiao HAO, Qing WANG, Yu XU. Effect of Mo/Nb/Ti/Zr Minor-alloying on the Second-phase Precipitation and Microhardness in Fe-Cl-Al Stainless Steels[J]. 材料研究学报, 2018, 32(8): 575-583.
[14] Yang LV, Donghui WEN, Zhenhua WANG, Qing WANG, Rui TANG, Huan HE. Second-phase Precipitation in Mo/Nb/Ta/Ti Minor-alloyed 310S Stainless Steel at 700℃[J]. 材料研究学报, 2018, 32(5): 371-380.
[15] Zhiping HU, Yunbo XU, Hui LIU, Le WANG. Microstructure Evolution and Mechanical Properties of Cold-rolled Mn-Al TRIP Steel with δ Ferrite[J]. 材料研究学报, 2018, 32(3): 177-183.
No Suggested Reading articles found!