Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (4): 308-314    DOI: 10.11901/1005.3093.2022.232
ARTICLES Current Issue | Archive | Adv Search |
An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula
CHEN Zhipeng1, ZHU Zhihao1, SONG Mengfan1, ZHANG Shuang2, LIU Tianyu3, DONG Chuang1,2()
1.Key Laboratory of Materials Modification, Ministry of Education, University of Technology, Dalian 116024, China
2.School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
3.Shenyang Research Institute of Foundry Co., Ltd., State Key Laboratory of Light Alloy Casting Technology for High-End Equipment, Shenyang 110022, China
Cite this article: 

CHEN Zhipeng, ZHU Zhihao, SONG Mengfan, ZHANG Shuang, LIU Tianyu, DONG Chuang. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula. Chinese Journal of Materials Research, 2023, 37(4): 308-314.

Download:  HTML  PDF(6963KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The near-α dual-phase Ti-Al-V-Mo-Nb-Zr alloy series were designed and prepared by copper-mold suction casting in this paper. Their compositions fall within the composition framework previously determined for Ti-6Al-4V: the α and β formulas satisfy the ratio of 12:5, but the β part can be further stabilized, by using multi-element alloying and especially by varying the addition amount of Zr, into the form of [Al-Ti14-x Zr x ](Mo0.6Nb0.2V1.2Al), x = 0.6~3. The as-cast alloys are all characterized by a basket-weave microstructure containing a large number of α' martensite needles. With increasing Zr content the α' needles are gradually refined, and the strength and hardness increase accordingly. Among them a Ti-6.7Al-2.2V-2.1Mo-0.7Nb-10.0Zr alloy achieves the ultra-high strength level, with the ultimate tensile strength of 1404 MPa and Vickers-hardness of 451HV, close to the typical ultra-high-strength β-21s after heat-treatment. In comparison with Ti-6Al-4V prepared in the identical conditions, the strength and hardness of this alloy exceeds those of Ti-6Al-4V by 52% and 39%, and the specific strength and hardness are increased by 45% and 33% respectively.

Key words:  metallic materials      titanium alloy      Ti-Al-V-Mo-Nb-Zr      cluster formula      mechanical properties     
Received:  24 April 2022     
ZTFLH:  TG146.2+3  
Fund: 2020 Key Basic Research Project of Science and Technology Commission of the Military Commission(2020JCJQZD165);Key Discipline and Major Project of Dalian Science and Technology Innovation Foundation(2020JJ25CY004)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.232     OR     https://www.cjmr.org/EN/Y2023/V37/I4/308

Fig.1  Tensile sample at room temperature
AlloyComposition formula

Composition / %,

mass fraction

a[Mo]eqb[Al]eq

cΔTL-S

/ ℃

Ti-6Al-4V12[Al-Ti12](AlTi2)+5[Al-Ti14](V2Ti)Ti90.01Al6.05V3.942.76.013.3
Ti212[Al-Ti12](AlTi2)+5[Al-Ti13.4Zr0.6](AlV1.2Mo0.6Nb0.2)Ti85.7Al7.0Mo2.2Nb0.7V2.3Zr2.13.947.310.9
Ti412[Al-Ti12](AlTi2)+5[Al-Ti13Zr1](AlV1.2Mo0.6Nb0.2)Ti84.4Al6.9Mo2.2Nb0.7V2.3Zr3.53.917.518.3
Ti612[Al-Ti12](AlTi2)+5[Al-Ti12.4Zr1.6](AlV1.2Mo0.6Nb0.2)Ti82.4Al6.9Mo2.2Nb0.7V2.3Zr5.53.887.824.3
Ti712[Al-Ti12](AlTi2)+5[Al-Ti12Zr2](AlV1.2Mo0.6Nb0.2)Ti81.3Al6.8Mo2.1Nb0.7V2.3Zr6.83.858.026.6
Ti912[Al-Ti12](AlTi2)+5[Al-Ti11.4Zr2.6](AlV1.2Mo0.6Nb0.2)Ti79.4Al6.8Mo2.1Nb0.7V2.3Zr8.73.818.232.5
Ti1012[Al-Ti12](AlTi2)+5[Al-Ti11Zr3](AlV1.2Mo0.6Nb0.2)Ti78.3Al6.7Mo2.1Nb0.7V2.2Zr10.03.798.434.8
Table1  Cluster formulas, compositions, Mo- and Al- equivalents, and solidification ranges of Ti-6Al-4V and Ti-Al-V-Mo-Nb-Zr alloys
Fig.2  OM images of as-cast Ti-Al-V-Mo-Nb-Zr alloys with different Zr contents
AlloyTi2Ti4Ti6Ti7Ti9Ti10
Original grain size397±4357±20238±16207±11239±14372±16
α' martensite needles1±0.20.9±0.20.8±0.10.6±0.20.5±0.10.3±0.1
Table 2  Original grain and α' martensite needles size of as-cast Ti-Al-V-Mo-Nb-Zr alloys with different Zr contents (μm)
Fig.3  SEM images of Ti-Al-V-Mo-Nb-Zr as-cast alloys with different Zr contents
Fig.4  XRD patterns of as-cast Ti-Al-V-Mo-Nb-Zr alloys with different Zr contents
Fig.5  Room-temperature tensile properties of Ti-Al-V-Mo-Nb-Zr alloys
Fig.6  Comparisons of room temperature tensile properties between the present Ti-Al-V-Mo-Nb-Zr alloys and the reported ultra-high strength[4,5] and near-α titanium[3] Ti alloys
Fig7  Vickers hardness (a), mass densities (b), specific hardness (c) and specific strength of as-cast Ti-Al-V-Mo-Nb-Zr alloys (d),specific hardness denotes the hardness-over-density ratio, and specific strength denotes the ultimate tensile strength-over-density ratio, respectively
1 Wang Q J, Liu J R, Yang R. High temperature titanium alloys: status and perspective[J]. J. Aeronaut. Mater., 2014, 34(4): 1
王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景[J]. 航空材料学报, 2014, 34(4): 1
2 Xu G D, Wang F E. Development and application on high-temperature Ti-based alloys[J]. Chin. J. Rare Met., 2008, 32(6): 774
许国栋, 王凤娥. 高温钛合金的发展和应用[J]. 稀有金属, 2008, 32(6): 774
3 Zhao Y Q. Titanium industry progress[J]. Titanium Ind. Prog., 2001, (1): 33
赵永庆. 高温钛合金研究[J]. 钛工业进展, 2001, (1): 33
4 Shang G Q, Zhu Z S, Chang H, et al. Development of ultra-high strength titanium alloy[J]. Chin. J. Rare Met., 2011, 35(2): 286
商国强, 朱知寿, 常 辉 等. 超高强度钛合金研究进展[J]. 稀有金属, 2011, 35(2): 286
5 Zhang Z, Hui S X, Liu W. High strength and high toughness TB10 titanium alloy bars[J]. Chin. J. Rare Met., 2006, 30(2): 221
张 翥, 惠松骁, 刘 伟. 高强高韧TB10钛合金棒材研究[J]. 稀有金属, 2006, 30(2): 221
6 Chen W, Liu Y X, Li Z Q. Research status and development trend of high-strength β titanium alloys[J]. J. Aeronaut. Mater., 2020, 40(3): 63
陈 玮, 刘运玺, 李志强. 高强β钛合金的研究现状与发展趋势[J]. 航空材料学报, 2020, 40(3): 63
7 Wang Q, Dong C, Liaw P K. Structural stabilities of β-Ti alloys studied using a new Mo equivalent derived from [β/(α+β)] phase-boundary slopes[J]. Metall. Mater. Trans. A, 2015, 46 (8): 3440
doi: 10.1007/s11661-015-2923-3
8 Weiss I, Semiatin S L. Thermomechanical processing of alpha titanium alloys—an overview[J]. Mater. Sci. Eng. A, 1999, 263: 243
doi: 10.1016/S0921-5093(98)01155-1
9 Duan Y H, Wu Y, Peng M J, et al. The interstitial diffusion behaviors and mechanisms of boron in α-Ti and β-Ti: a first-principles calculation[J]. Comput. Mater. Sci., 2020, 184: 109866
doi: 10.1016/j.commatsci.2020.109866
10 Leyens C, Peters M. Titanium and Titanium Alloys: Fundamentals and Applications[M]. Weinheim: Wiley-VCH, John Wiley, 2003
11 Dong C, Dong D D, Wang Q. Chemical units in solid solutions and alloy composition design[J]. Acta Metall. Sin., 2018, 54: 293
董 闯, 董丹丹, 王 清. 固溶体中的化学结构单元与合金成分设计[J]. 金属学报, 2018, 54: 293
12 Dong C, Wang Z J, Zhang S, et al. Review of structural models for the compositional interpretation of metallic glasses[J]. Int. Mater. Rev., 2020, 65(5): 286
doi: 10.1080/09506608.2019.1638581
13 Liu T Y, Min X H, Zhang S, et al. Microstructures and mechanical properties of Ti-Al-V-Nb alloys with cluster formula manufactured by laser additive manufacturing[J]. Trans. Nonferrous Metals Soc. China, 2021, 31(10): 3012
doi: 10.1016/S1003-6326(21)65711-4
14 Wang Q, Ji C J, Wang Y M, et al. β-Ti alloys with low young's moduli interpreted by cluster-plus-glue-atom model[J]. Metall. Mater. Trans., 2013, 44A(4): 1872
15 Che J D, Jiang B B, Wang Q, et al. Effects of minor Hf/Ta/Nb additions on high-temperature oxidation-resistant properties of near α-Ti alloys[J]. Chin. J. Nonferrous Met., 2016, 26: 2086
doi: 10.1016/S1003-6326(16)64288-7
车晋达, 姜贝贝, 王 清 等. 微量元素(Hf/Ta/Nb)添加对近α-Ti合金高温抗氧化性能的影响[J]. 中国有色金属学报, 2016, 26: 2086
16 Liu T Y, Zhang S, Wang Q, et al. Composition formulas of Ti alloys derived by interpreting Ti-6Al-4V[J]. Sci. China Technol. Sci., 2021, 64(8): 1732
doi: 10.1007/s11431-020-1812-9
17 Zhang T L, Zhu J M, Yang T, et al. A new α+β Ti-alloy with refined microstructures and enhanced mechanical properties in the as-cast state[J]. Scr. Mater., 2022, 207: 114260
doi: 10.1016/j.scriptamat.2021.114260
18 Jing R, Liang S X, Liu C Y, et al. Structure and mechanical properties of Ti-6Al-4V alloy after zirconium addition[J]. Mater. Sci. Eng. A, 2012, 552: 295
doi: 10.1016/j.msea.2012.05.043
19 Zhang Z X, Qu S J, Feng A H, et al. Achieving grain refinement and enhanced mechanical properties in Ti-6Al-4V alloy produced by multidirectional isothermal forging[J]. Mater. Sci. Eng., 2017, 692: 127
doi: 10.1016/j.msea.2017.03.024
20 Welsch G, Boyer R, Collings E W. Materials Properties Handbook: Titanium Alloys[M]. Materials Park: ASM International, 1994
21 Devaraj A, Joshi V V, Srivastava A, et al. A low-cost hierarchical nanostructured beta-titanium alloy with high strength[J]. Nat. Commun., 2016, 7: 11176
doi: 10.1038/ncomms11176 pmid: 27034109
22 Chen Y. The microstructure and mechanical properties of Ti-Al-V-Fe-O low cost titanium alloy[D]. Harbin: Harbin Institute of Technology, 2014
陈 云. 低成本Ti-Al-V-Fe-O合金的组织和性能[D]. 哈尔滨: 哈尔滨工业大学, 2014
23 Murray J L. Phase Diagrams of Binary Titanium Alloys[M]. Materials Park: ASM International, 1987: 340
24 Zheng Y F, Williams R E A, Nag S, et al. The effect of alloy composition on instabilities in the β phase of titanium alloys[J]. Scr. Mater., 2016, 116: 49
doi: 10.1016/j.scriptamat.2016.01.024
25 Jiao Z G, Ma C, Fu J, et al. The effects of Zr contents on microstructure and properties of laser additive manufactured Ti-6.5Al-3.5Mo-0.3Si-xZr alloys[J]. J. Alloys Compd., 2018, 745: 592
doi: 10.1016/j.jallcom.2018.02.079
26 Fu B G, Wang H W, Zou C M, et al. The influence of Zr content on microstructure and precipitation of silicide in as-cast near α titanium alloys[J]. Mater. Charact., 2015, 99: 17
doi: 10.1016/j.matchar.2014.09.015
27 Mehjabeen A, Xu W, Qiu D, et al. Redefining the β-phase stability in Ti-Nb-Zr alloys for alloy design and microstructural prediction[J]. JOM, 2018, 70: 2254
doi: 10.1007/s11837-018-3010-1
28 Kitashima T, Suresh K S, Yamabe-Mitarai Y. Effect of germanium and silicon additions on the mechanical properties of a near-α titanium alloy[J]. Mater. Sci. Eng. A, 2014, 597: 212
doi: 10.1016/j.msea.2013.12.099
29 Zhan Y Z, Li C L, Jiang W P. β-type Ti-10Mo-1.25Si-xZr biomaterials for applications in hard tissue replacements[J]. Mater. Sci. Eng., 2012, 32C: 1664
30 Dai S J, Wang Y, Chen F, et al. Influence of Zr content on microstructure and mechanical properties of implant Ti-35Nb-4Sn-6Mo-xZr alloys[J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 1299
doi: 10.1016/S1003-6326(13)62597-2
31 Min X H, Emura S, Zhang L, et al. Effect of Fe and Zr additions on ω phase formation in β-type Ti-Mo alloys[J]. Mater. Sci. Eng. A, 2008, 497 (1-2): 74
doi: 10.1016/j.msea.2008.06.018
32 Hao Y L, Li S J, Sun S Y, et al. Effect of Zr and Sn on Young's modulus and superelasticity of Ti-Nb-based alloys[J]. Mater. Sci. Eng. A, 2006, 441 (1-2): 112
doi: 10.1016/j.msea.2006.09.051
33 Guo T. Effect of Zr on the microstructure and properties of short-term high temperature titanium alloys[D]. Harbin: Harbin Institute of Technology, 2017
郭 涛. Zr对短时高温钛合金组织和性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2017
34 Matsumoto H, Yoneda H, Fabregue D, et al. Mechanical behaviors of Ti-V-(Al, Sn) alloys with α′ martensite microstructure[J]. J. Alloys Compd., 2011, 509(6): 2684
doi: 10.1016/j.jallcom.2010.11.089
35 Mahdavi M, Standish M, Iskakov A, et al. Reduced-order models correlating Ti beta 21S microstructures and vickers hardness measurements[J]. Mater. Genome Eng., 2021, 1(1): 1
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
No Suggested Reading articles found!