Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (3): 219-227    DOI: 10.11901/1005.3093.2021.428
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Wear Resistance of CoCrFeNiTi x High Entropy Alloy Coating
TIAN Zhigang, LI Xinmei(), QIN Zhong, WANG Xiaohui, LIU Weibin, HUNG Yong
School of Mechanical Engineering, Xinjiang University, Urumqi 830047, China
Cite this article: 

TIAN Zhigang, LI Xinmei, QIN Zhong, WANG Xiaohui, LIU Weibin, HUNG Yong. Microstructure and Wear Resistance of CoCrFeNiTi x High Entropy Alloy Coating. Chinese Journal of Materials Research, 2023, 37(3): 219-227.

Download:  HTML  PDF(17586KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

CoCrFeNiTi x (x=0, 0.2, 0.5, 0.8) high-entropy alloy coating was prepared on 40Cr steel surface by laser cladding technology and its thermodynamic parameters were calculated. The phase composition, microstructure, element distribution, hardness and wear resistance of the alloy were detected by X-ray diffractometer (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), microhardness tester and friction and wear tester. The effects of Ti content on the microstructure and wear resistance of the alloy were investigated. The results show that with the increase of Ti content, the alloy phase forms a body-centered cubic (BCC) structure on the basis of the face-centered cubic (FCC) structure. The microstructure in the middle of the cladding layer is composed of equiaaxial crystals with obvious grain boundaries and uniform grain distribution, and finally the columnar dendrites are formed. With the increase of Ti content, the hardness of cross section of the alloy increases gradually, and the highest is 412.32 HV0.2, which is 1.8 times higher than that of the matrix. The wear amount and friction coefficient of the coating decrease accordingly. When Ti content is 0.8, the coating has the best wear resistance, the minimum wear amount is 6.8mg, and the friction coefficient is 0.35. The wear mechanism of coating is mainly abrasive wear, adhesive wear and oxidation wear.

Key words:  metallic materials      high entropy alloy coating      laser cladding      wear resistance     
Received:  28 July 2021     
ZTFLH:  TG131  
Fund: National Natural Science Foundation of China(52161017);National Natural Science Foundation of China(51865055);Natural Science Foundation of Xinjiang(2022D01C386)
Corresponding Authors:  LI Xinmei, Tel: 17716909771, E-mail: 35335499@qq.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.428     OR     https://www.cjmr.org/EN/Y2023/V37/I3/219

ElementCrMnCSiSpCuNi
Content/%0.80~1.100.50~0.800.37~0.40.17~0.37≤0.035≤0.035≤0.035≤0.035
Table 1  Chemical composition of 40Cr steel
Laser power / kWScanning speed / mm·s-1Spot diameter / mmOverlap ratio
1.16250%
Table 2  Experimental process parameters
Alloyδ / %ΔHmixΔSmixΩVECΔχ
CoCrFeNiTi01.06-3.7511.533.718.250.097
CoCrFeNiTi0.23.66-7.3512.572.768.050.112
CoCrFeNiTi0.55.33-11.5613.151.867.780.127
CoCrFeNiTi0.86.26-14.6913.351.57.540.137
Table 3  Calculation parameters of CoCrFeNiTi x high entropy alloy
ElementCoCrFeNiTi
Co--4-10-28
Cr---1-7-7
Fe----2-17
Ni-----35
Ti-----
Table 4  ΔHijmix enthalpy of mixing of different atomic pairs in CoCrFeNiTi x high entropy alloy (kJ/mol)[26]
Fig.1  XRD spectrum of CoCrFeNiTi x (x=0, 0.2, 0.5,0.8) high entropy alloy
Fig.2  SEM images of CoCrFeTi x (x=0, 0.2, 0.5, 0.8) alloy with high entropy
xRegionElements / %, atom fraction
CoCrFeNiTi
x=0Nominal252525250
A14.7913.5458.9012.770
B14.5016.8855.4513.170
x=0.2Nominal23.8123.8123.8123.814.76
A18.9520.4742.0416.731.81
B18.0920.7637.8117.336.01
x=0.5Nominal22.2222.2322.2222.2211.11
A13.0114.7057.3511.523.41
B13.6410.8641.1714.7619.58
x=0.8Nominal20.8320.8320.8420.8316.67
A9.7212.3265.038.514.41
B10.1112.8461.049.026.98
Table 5  EDS analysis of CoCrFeNiTi x high entropy alloy coating
Fig.3  Surface scanning and element distribution of CoCrFeNiTi x (x=0, 0.5) high entropy alloy
Fig.4  Microhardness of CoCrFeNiTi x (x=0, 0.2, 0.5, 0.8) high entropy alloy
Fig.5  Wear amount and average friction coefficient of CoCrFeNiTi x (x=0, 0.2, 0.5, 0.8) high entropy alloy coating
Fig.6  3D morphology of wear trace of CoCrFeNiTi x (x=0, 0.2, 0.5, 0.8) high entropy alloy coating
Fig.7  Wear surface morphology of 40Cr steel and CoCrFeNiTi x (x=0, 0.2, 0.5, 0.8) alloy coatings
xCoCrFeNiTiOC
01.191.4734.580.8902.9158.94
0.24.954.6946.534.491.2027.5210.62
0.54.805.1347.673.954.4519.8814.11
0.82.653.1428.172.382.2948.7112.68
Table 6  EDS analysis of wear surface of CoCrFeNiTi x (x=0, 0.2, 0.5, 0.8) high entropy alloy coating (atom fraction, %)
1 Yeh J W, Chen S K, Lin S J, et al. Microstructural control and properties optimization of high-entropy alloys [J]. Advanced Engineering Materials, 2004, 6: 299
doi: 10.1002/(ISSN)1527-2648
2 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Advanced Engineering Materials, 2004, 6(5): 299
doi: 10.1002/(ISSN)1527-2648
3 Tsai M H, Yeh J W. High-entropy alloys: a critical review [J]. Materials Research Letters, 2014, 2(3): 107
doi: 10.1080/21663831.2014.912690
4 Otto F, Yang Y, Bei H, et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys [J]. Acta Materialia, 2013, 61(7): 2628
doi: 10.1016/j.actamat.2013.01.042
5 Cantor B, Chang I, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Materials Science and Engineering: A, 2004, 375
6 Yang Y, Hao Q F. Lattice distortion in high entropy alloys [J]. Acta Metall Sinica, 2021, 57(04): 385
杨 勇, 赫全锋. 高熵合金中的晶格畸变 [J]. 金属学报, 2021, 57(04): 385
7 Yeh J W, Recent progress in high-entropy alloys [J]. European Journal of Control, 2006, 31(6): 633
8 Zhang W R, Liaw P K, Zhang Y. Science and technology in high-entropy alloys [J]. Science China Materials, 2018, 61(1): 2
doi: 10.1007/s40843-017-9195-8
9 Nong Z S, Lei Y N, Zhu J C. Wear and oxidation resistances of AlCrFeNiTi-based high entropy alloys [J]. Intermetallics, 2018, 101: 144
doi: 10.1016/j.intermet.2018.07.017
10 Nene S S, Frank M, Liu K, et al. Corrosion-resistant high entropy alloy with high strength and ductility [J]. Scripta Materialia, 2019, 166: 168
doi: 10.1016/j.scriptamat.2019.03.028
11 Erdogan A, Dleker K M, Zeytin S. Effect of laser re-melting on electric current assistive sintered CoCrFeNiAl x Ti y high entropy alloys: Formation, micro-hardness and wear behaviors [J]. Surface and Coatings Technology, 2020, 399: 126179
doi: 10.1016/j.surfcoat.2020.126179
12 Zhu L D, Xue P S, Lan Q, et al. Recent research and development status of laser cladding: A review [J]. Optics and Laser Technology, 2021, 138
13 Jyoti M, Akash V, Pringal P, et al. Wear, erosion and corrosion behavior of laser cladded high entropy alloy coatings–A review [J]. Materials Today: Proceedings, 2020, 38: 2824
doi: 10.1016/j.matpr.2020.08.763
14 Samuel A U, Fayomi O S I, Omotosho A. O. Prospect of high entropy alloys (HETAs) for advance application [J]. IOP Conference Series: Materials Science and Engineering, 2021, 1107(1): 012162
15 Siddiqui A A, Dubey A K. Recent trends in laser cladding and surface alloying [J]. Optics & Laser Technology, 2021, 134(8): 106619
16 Zhang S, Han B, Li M, et al. Investigation on solid particles erosion resistance of laser cladded CoCrFeNiTi high entropy alloy coating [J]. Intermetallics, 2021, 131(9): 107111
doi: 10.1016/j.intermet.2021.107111
17 Gu Z, Xi S, Sun C. Microstructure and properties of laser cladding and CoCr2.5FeNi2Ti x high-entropy alloy composite coatings [J]. Journal of Alloys and Compounds, 2019, 819
18 Liu Q, Wang X Y, Huang Y B, et al. Effect of Mo content on microstructure and Corrosion Resistance of CoCrFeNiMo high entropy alloy [J]. Chinese Journal of Materials Research, 2020, 34(11): 868
刘 谦, 王昕阳, 黄燕滨 等. Mo含量对CoCrFeNiMo高熵合金组织及耐蚀性能的影响 [J]. 材料研究学报, 2020, 34(11): 868
19 Zhang S, Han B, Li M, et al. Investigation on solid particles erosion resistance of laser cladded CoCrFeNiTi high entropy alloy coating[J]. Intermetallics, 2021, 131(9): 107111
doi: 10.1016/j.intermet.2021.107111
20 Soni V K, Sanyal S, Sinha S K. Phase evolution and mechanical properties of novel FeCoNiCuMo x high entropy alloys [J]. Vacuum, 2020, 174: 109173
doi: 10.1016/j.vacuum.2020.109173
21 Huang L, Wang X, Jia F, et al. Effect of Si element on phase transformation and mechanical properties for FeCoCrNiSi x high entropy alloys [J]. Materials Letters, 2021, 282(12815): 128809
doi: 10.1016/j.matlet.2020.128809
22 Zhang Y, Zhou Y J, Lin J P, et al. Solid‐solution phase formation rules for multi‐component alloys [J]. Advanced Engineering Materials, 2008, 10(6): 534
doi: 10.1002/(ISSN)1527-2648
23 Yang X, Chen, S Y, Cotton, J D, et al. Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium. Jom, 2014, 66 (10), 2009
doi: 10.1007/s11837-014-1059-z
24 Guo S, Hu Q, Ng C, et al. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase [J]. Intermetallics, 2013, 41: 96
doi: 10.1016/j.intermet.2013.05.002
25 Dong Y, Yi P, et al. Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys [J]. Intermetallics, 2014, 52: 105
doi: 10.1016/j.intermet.2014.04.001
26 Akira T, Akihisa I. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Materials Transnctions, 2005, 46(12): 2817
27 Gu Z, Xi S Q, Sun C F. Microstructure and properties of laser cladding and CoCr2.5FeNi2Ti x high-entropy alloy composite coatings [J]. Journal of Alloys and Compounds, 2020, 819(C)
28 Hui Z, He Y Z, Pan Y, et al. Phase selection, microstructure and properties of laser rapidly solidified FeCoNiCrAl2Si coating [J]. Intermetallics, 2011, 19(8): 1130
doi: 10.1016/j.intermet.2011.03.017
29 Ma M X, Wang Z X, Zhou J C Z, al et,. Effect of Ti doping on microstructure and wear resistance of CoCrCuFeMn high entropy alloy [J]. Chinese Journal of Mechanical Engineering, 2020, 56(10): 110
马明星, 王志新, 周家臣 等. Ti掺杂对CoCrCuFeMn高熵合金组织结构和耐磨性的影响 [J]. 机械工程学报, 2020, 56(10): 110
doi: 10.3901/JME.2020.10.110
30 Jin B, Zhang N, Yu H, et al. AlxCoCrFeNiSi high entropy alloy coatings with high microhardness and improved wear resistance [J]. Surface and Coatings Technology, 2020, 402(4): 126328
doi: 10.1016/j.surfcoat.2020.126328
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!