Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (3): 161-167    DOI: 10.11901/1005.3093.2022.080
ARTICLES Current Issue | Archive | Adv Search |
Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy
ZHANG Ruixue1,2, MA Yingjie2, JIA Yandi2, HUANG Sensen2, LEI Jiafeng2, QIU Jianke2, WANG Ping1(), YANG Rui2
1.Key Laboratory of EPM, Ministry of Education, Northeastern University, Shenyang 110819, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

ZHANG Ruixue, MA Yingjie, JIA Yandi, HUANG Sensen, LEI Jiafeng, QIU Jianke, WANG Ping, YANG Rui. Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy. Chinese Journal of Materials Research, 2023, 37(3): 161-167.

Download:  HTML  PDF(16073KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The phase transformation of high-strength Ti-alloy is complex and closely related to the element partitioning during heat-treatment. The microstructure evolution and element partitioning behavior of metastable Ti-alloy Ti-5Al-5Mo-5V-3Cr-0.6Fe, being subjected to different solution and aging treatments were studied. The results showed that after β solution-treatment followed by furnace cooling to (α+β) solution-treatment, α grain boundary (αGB) and a small amount of intracrystalline primary α(αp) could form in the alloy. Next, after a two-stage aging-treatment at low-temperature and high-temperature, the ω-phase precipitated during low-temperature aging could affect the size of secondary α(αs)-lamellar formed during high-temperature aging. The electron probe microanalysis was used to characterize the typical element partitioning effect occurred between α- and β-phase, during solution-treatment, and of which the influence on the microstructure evolution is discussed. The element partitioning behavior led to higher content of β stabilizing elements near αGB and αp, which improved the stability of β matrix in the above region. The precipitation free zone formed near αGB and αp during low-temperature. After high-temperature aging, the refined αs precipitated away from αGB induced by the ω-phase assisted nucleation. While the size of αs was larger within 2 μm nearby αGB owning to the absence of ω-assisted nucleation.

Key words:  metallic materials      metastable β titanium alloy      element partitioning      ω phase      microstructure evolution     
Received:  28 January 2022     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(51871225);Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010101)
Corresponding Authors:  WANG Ping, Tel: 13340029004, E-mail: wping@epm.neu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.080     OR     https://www.cjmr.org/EN/Y2023/V37/I3/161

ElementsAlMoVCrFeSi
Ti-5553-0.6Fe5.095.234.902.780.510.01
Table 1  Chemical composition of Ti-5553-0.6Fe alloy (mass fraction, %)
DesignationHeat-treatment parameters
ST-830~750830℃/1 h furnace-cooled (1℃/min) to 750℃/1 h—W.Q.
AT-350350℃/10 h—A.C.
AT-350+560350℃/10 h—A.C. and 560℃/4 h—A.C.
Table 2  Heat-treatment parameters of the Ti-5553-0.6Fe alloy
Fig.1  Metallographic structure of the Ti-5553-0.6Fe alloy after solution treatment in β field
Fig.2  SEM morphologies of Ti-5553-0.6Fe alloy under the condition of ST-830-750 (a), while two local magnifications were shown in (b) and (c)
Fig.3  SEM and TEM morphologies of Ti-5553-0.6Fe alloy after low temperature aging (a) and (b) SEM microstructures of ST-830~750, (c) bright field image of α away from αGB, (d) and (e) diffraction patterns of [110] β and [113] β zone axis in (c), (f) dark field image selecting reflections in red circles in (e)
Fig.4  SEM morphologies of Ti-5553-0.6Fe alloy after final aging (ST-830~750+AT-350+560) (a), while three local magnifications are shown in (b, c) and (d)
Fig.5  DSC curve of solution treated sample of Ti-5553-0.6Fe during continuous heating
Fig.6  Microstructures and corresponding elements distribution of Ti-5553-0.6Fe under different heat-treatments (a) ST-830-750, (b) AT-350, (c) AT-350+560
Fig.7  Variations of quantitative elements composition near αGB along the direction as shown by the red arrows in Fig.6 (a) ST-830-750, (b) AT-350
1 Ivasishin O M, Markovsky P E, Matviychuk Y V, et al. A comparative study of the mechanical properties of high-strength β-titanium alloys [J]. J. Alloys Compd., 2008, 457(1-2): 296
doi: 10.1016/j.jallcom.2007.03.070
2 Bahl S, Suwas S, Chatterjee K. Comprehensive review on alloy design, processing, and performance of β titanium alloys as biomedical materials [J]. Int. Mater. Rev., 2020, 66(2): 114
doi: 10.1080/09506608.2020.1735829
3 Kang L, Yang C. A Review on high-strength titanium alloys: microstructure, strengthening, and properties [J]. Adv. Eng. Mater., 2019, 21: 1801359
doi: 10.1002/adem.v21.8
4 Xi G Q, Qiu J K, Lei J F, et al. Room temperature creep behavior of Ti-6Al-4V alloy [J]. Chin. J. Mater. Res., 2021, 35(12): 881
doi: 10.11901/1005.3093.2021.151
席国强, 邱建科, 雷家峰 等. Ti-6Al-4V合金的室温蠕变行为 [J]. 材料研究学报, 2021, 35(12): 881
doi: 10.11901/1005.3093.2021.151
5 Liu X Y, Liu K J, Yang X R, et al. Fatigue crack propagation behavior of ultrafine grained pure titanium [J]. Chin. J. Mater. Res., 2020, 34(6): 417
doi: 10.11901/1005.3093.2019.492
刘晓燕, 柳奎君, 杨西荣 等. 超细晶纯钛疲劳裂纹的扩展行为 [J]. 材料研究学报, 2020, 34(6): 417
doi: 10.11901/1005.3093.2019.492
6 Sun Z, Guo S, Yang H. Nucleation and growth mechanism of α-lamellae of Ti alloy TA15 cooling from an α+β phase field [J]. Acta Mater., 2013, 61(6): 2057
doi: 10.1016/j.actamat.2012.12.025
7 Li T, Kent D, Sha G, et al. The mechanism of ω-assisted α phase formation in near β-Ti alloys [J]. Scr. Mater., 2015, 104: 75
doi: 10.1016/j.scriptamat.2015.04.007
8 Lai M J, Li T, Yan F K, et al. Revisiting ω phase embrittlement in metastable β titanium alloys: Role of elemental partitioning [J]. Scr. Mater., 2021, 193: 38
doi: 10.1016/j.scriptamat.2020.10.031
9 Tang B, Chu Y, Zhang M, et al. The ω phase transformation during the low temperature aging and low rate heating process of metastable β titanium alloys [J]. Mater. Chem. Phys., 2020, 239: 122125
doi: 10.1016/j.matchemphys.2019.122125
10 Nag S, Banerjee R, Srinivasan R, et al. ω-Assisted nucleation and growth of α precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β titanium alloy [J]. Acta Mater., 2009, 57(7): 2136
doi: 10.1016/j.actamat.2009.01.007
11 Zheng Y F, Williams R E, Sosa J M, et al. The indirect influence of the omega phase on the degree of refinement of distributions of the alpha phase in metastable beta titanium alloys [J]. Acta Mater., 2016, 103: 165
doi: 10.1016/j.actamat.2015.09.053
12 Pham T N, Ohno K, Sahara R, et al. Clear evidence for element partitioning effects in a Ti-6Al-4V alloy by the first-principles phase field method [J]. J. Phys. Condens. Matter, 2020, 32: 264001
doi: 10.1088/1361-648X/ab7ad5
13 Huang S S, Zhang J H, Ma Y J, et al. Influence of thermal treatment on element partitioning in α+β titanium alloy [J]. J. Alloys Compd., 2019, 791: 575
doi: 10.1016/j.jallcom.2019.03.332
14 Gao X, Zeng W, Zhang S, et al. A study of epitaxial growth behaviors of equiaxed alpha phase at different cooling rates in near alpha titanium alloy [J]. Acta Mater., 2017, 122: 298
doi: 10.1016/j.actamat.2016.10.012
15 Huang S, Zhao Q, Wu C, et al. Effects of β-stabilizer elements on microstructure formation and mechanical properties of titanium alloys [J]. J. Alloys Compd., 2021, 876: 160085
doi: 10.1016/j.jallcom.2021.160085
16 Ohsaka K, Trinh E H, Holzer J C, et al. Gibbs free-energy difference between the undercooling liquid and the beta-phase of a Ti-Cr alloy [J]. Appl. Phys. Lett., 1992, 60(9): 1079
doi: 10.1063/1.106450
17 Zhang R X, Ma Y J, Qi M, et al. The effect of precursory α and ω phase on microstructure evolution and tensile properties of metastable β titanium alloy [J]. J. Mater. Res. Technol., 2022, 16: 912
doi: 10.1016/j.jmrt.2021.12.066
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!