Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (3): 168-174    DOI: 10.11901/1005.3093.2022.053
ARTICLES Current Issue | Archive | Adv Search |
Excellent Cryogenic Tensile Properties of Ultra-fine Grained 316L Stainless Steel after Electropulsing Treatment in Liquid Nitrogen
DONG Yu'ang1, YANG Huajie1(), BEN Dandan1, MA Yunrui1,2, ZHOU Xianghai1, WANG Bin1, ZHANG Peng1, ZHANG Zhefeng1()
1.Shi‑changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.State Grid Henan Electric Power Research Institute, Zhengzhou 450052, China
Cite this article: 

DONG Yu'ang, YANG Huajie, BEN Dandan, MA Yunrui, ZHOU Xianghai, WANG Bin, ZHANG Peng, ZHANG Zhefeng. Excellent Cryogenic Tensile Properties of Ultra-fine Grained 316L Stainless Steel after Electropulsing Treatment in Liquid Nitrogen. Chinese Journal of Materials Research, 2023, 37(3): 168-174.

Download:  HTML  PDF(2581KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of electropulsing treatment (EPT) in liquid nitrogen (LN) on the microstructure and mechanical properties of cold-rolled 316L austenitic stainless steel was assessed, aiming at tensile properties of the EPT-LN treated cold-rolled 316L steel at room and cryogenic temperature, and the relevant deformation mechanisms. It is found that the LN-EPT could induce recrystallization of the cold-rolled 316L stainless steel. The recrystallization ratio is dependent upon the EPT energy input, and after being treated by EPT-7.5LN with discharge voltage of 7.5 kV, the 316 steel presents a fully recrystallized microstructure. The EPT-LN treated steels exhibit significantly higher strength-ductility synergy when they were deformed at 77 K rather than at 293 K. The TEM observation result of the deformed steel revealed that the main mechanisms related with the tensile deformation of 316 steel at 293 K were mainly of dislocation slip and deformation twinning, however, there exist a large amount of deformation-induced martensite transition for that at 77 K. The martensite transitions and their subsequent deformation result in a significant increase in the strain hardening capability, thereby enhancing the strength-ductility synergy. Further analysis shows that the deformation mechanism transition is mainly caused by the significant reduction of stacking fault energy of the steel at low temperatures.

Key words:  metallic materials      316L stainless steel      cryogenic tensile      electropulsing      deformation mechanism      microstructure     
Received:  17 January 2022     
ZTFLH:  TG142.71  
Fund: National Natural Science Foundation of China(51975552);National Natural Science Foundation of China(52130002);Liao Ning Revitalization Talents Program(XLYC1808027)
Corresponding Authors:  YANG Huajie, Tel: (024)23971043, E-mail: hjyang@imr.ac.cn;
ZHANG Zhefeng, Tel: (024)83978779, E-mail: zhfzhang@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.053     OR     https://www.cjmr.org/EN/Y2023/V37/I3/168

ElementCrNiMoCSiMnSPFe
Content16.5411.222.020.020.361.430.020.03Bal.
Table 1  Chemical composition of the 316L stainless steel (mass fraction, %)
Fig.1  Schematic illustrations of the EPT experiment (a) and the tensile test in the liquid nitrogen environment (b)
Fig.2  Microstructures of the tensile specimen before and after EPT (a) TEM image of the cold-rolled sample, (b, c) EBSD inverse pole figure (IPF) maps of the EPT-7LN and EPT-7.5LN samples, (d) lamellar thickness distribution diagram, (e, f) grain diameter distribution diagrams
Fig.3  Grain average misorientation map with grain boundaries of the sample after treated with EPT-7LN (a) and EPT-7.5LN (b)
Fig.4  Mechanical response of the EPT-7LN, EPT-7.5LN and cold-rolled samples under tensile tests at different temperatures (a) engineering stress-strain curves and (b) strain-hardening rate curves
YS/MPaUTS/MPaEL/%
Cold-rolled-293 K14637.1
EPT-7LN-293 K54393619.1
EPT-7.5LN-293 K44880838.7
Cold-rolled-77 K1665181637.8
EPT-7LN-77 K1184183655.2
EPT-7.5LN-77 K912161765.5
Table 2  Tensile properties of the samples at different temperature
Fig.5  XRD spectra after tensile test at room temperature and cryogenic temperature
Fig.6  TEM images show the tensile deformed microstructures of the sample (a) EPT-7LN-293 K; (b) EPT-7.5LN-293 K; (c) EPT-7LN-77 K; (d) EPT-7.5LN-77 K
1 Bruschi S, Pezzato L, Ghiotti A, et al. Effectiveness of using low-temperature coolants in machining to enhance durability of AISI 316L stainless steel for reusable biomedical devices [J]. J. Manuf. Process., 2019, 39: 295
doi: 10.1016/j.jmapro.2019.02.003
2 Liu H J, Wu Y, Han Q Y, et al. Mechanical tests on the ITER PF 316L jacket after compaction [J]. Cryogenics, 2011, 51(6): 234
doi: 10.1016/j.cryogenics.2010.06.017
3 Xiong Y, Yue Y, Lu Y, et al. Cryorolling impacts on microstructure and mechanical properties of AISI 316 LN austenitic stainless steel [J]. Mater. Sci. Eng., 2018, 709A: 270
4 Qiu X Y F, Yang Z Y, Ding Y L. Effect of retained/reversed austenite on improving -196℃ cryogenic impact property of high strength stainless steel [J]. Heat Treat. Met., 2021, 46(5): 71
doi: 10.13251/j.issn.0254-6051.2021.05.011
邱旭扬帆, 杨卓越, 丁雅莉. 残留/逆转变奥氏体对改善高强度不锈钢-196℃超低温冲击性能的影响 [J]. 金属热处理, 2021, 46(5): 71
doi: 10.13251/j.issn.0254-6051.2021.05.011
5 Zheng J Y, Wang K, Huang Z, et al. Study on strength of austenitic stainless steel under liquid-nitrogen temperature [J]. Pressure Vessel Technol., 2014, 31(8): 1
郑津洋, 王 珂, 黄 泽 等. 液氮温度下奥氏体不锈钢强度试验研究 [J]. 压力容器, 2014, 31(8): 1
6 Xu M Z, Wang J J, Liu C M. Low Temperature deformation behavior of high-nitrogen nickel-free austenitic stainless steels [J]. Acta Metall. Sin., 2011, 47(10): 1335
徐明舟, 王建军, 刘春明. 新型无Ni高N奥氏体不锈钢的低温变形行为 [J]. 金属学报, 2011, 47(10): 1335
doi: 10.3724/SP.J.1037.2011.00141
7 Li H P, Xiong Y, Lu Y, et al. Effect of strain rate on microstructure evolution and mechanical property of 316LN austenitic stainless steel at cryogenic temperature [J]. Chin. J. Mater. Res., 2018, 32(2): 105
doi: 10.11901/1005.3093.2017.223
李会鹏, 熊 毅, 路 妍 等. 应变速率对低温拉伸316LN奥氏体不锈钢微观组织和力学性能的影响 [J]. 材料研究学报, 2018, 32(2): 105
doi: 10.11901/1005.3093.2017.223
8 Fan Y L, Yang H L. Mechanical analysis of crack tip in cold working 316L stainless steel [J]. Hot Work. Technol., 2018, 47(19): 155
樊亚玲, 杨宏亮. 冷加工316L不锈钢裂尖力学分析 [J]. 热加工工艺, 2018, 47(19): 155
9 Kheiri S, Mirzadeh H, Naghizadeh M. Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing [J]. Mater. Sci. Eng., 2019, 759A: 90
10 Guan L, Tang G Y, Chu P K, et al. Enhancement of ductility in Mg-3Al-1Zn alloy with tilted basal texture by electropulsing [J]. J. Mater. Res., 2009, 24: 3674
doi: 10.1557/jmr.2009.0436
11 Yuan Y, Liu W, Fu B Q, et al. The effects of electropulsing on the recrystallization behavior of rolled pure tungsten [J]. J. Mater. Res., 2012, 27: 2630
doi: 10.1557/jmr.2012.292
12 Ben D D, Yang H J, Ma Y R, et al. Rapid hardening of AISI 4340 steel induced by electropulsing treatment [J]. Mater. Sci. Eng., 2018, 725A: 28
13 Gao J B, Ben D D, Yang H J, et al. Effects of electropulsing on the microstructure and microhardness of a selective laser melted Ti6Al4V alloy [J]. J. Alloys Compd., 2021, 875: 160044
doi: 10.1016/j.jallcom.2021.160044
14 Ben D D, Yang H J, Ma Y R, et al. Declined fatigue crack propagation rate of a high-strength steel by electropulsing treatment [J]. Adv. Eng. Mater., 2019, 21: 1801345
doi: 10.1002/adem.v21.7
15 Xiao S H, Zhou Y Z, Guo J D, et al. The effect of high current pulsing on persistent slip bands in fatigued copper single crystals [J]. Mater. Sci. Eng., 2002, 332A: 351
16 Yang C L, Yang H J, Zhang Z J, et al. Recovery of tensile properties of twinning-induced plasticity steel via electropulsing induced void healing [J]. Scr. Mater, 2018, 147: 88
doi: 10.1016/j.scriptamat.2018.01.008
17 Ma Y R, Yang H J, Tian Y Z, et al. Hardening and softening mechanisms in a nano-lamellar austenitic steel induced by electropulsing treatment [J]. Mater. Sci. Eng., 2018, 713A: 146
18 Ma Y R, Yang H J, Ben D D, et al. Anisotropic electroplastic effects on the mechanical properties of a nano-lamellar austenitic stainless steel [J]. Acta Metall. Sin., 2021, 34: 534
doi: 10.1007/s40195-020-01130-z
19 Pierce D T, Jiménez J A, Bentley J, et al. The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation [J]. Acta Mater., 2015, 100: 178
doi: 10.1016/j.actamat.2015.08.030
20 Allain S, Bouaziz O, Chateau J P. Thermally activated dislocation dynamics in austenitic FeMnC steels at low homologous temperature [J]. Scr. Mater., 2010, 62: 500
doi: 10.1016/j.scriptamat.2009.12.026
21 Jung I C, De Cooman B C. Temperature dependence of the flow stress of Fe-18Mn-0.6C-xAl twinning-induced plasticity steel [J]. Acta Mater., 2013, 61: 6724
doi: 10.1016/j.actamat.2013.07.042
22 Molnár D, Sun X, Lu S, et al. Effect of temperature on the stacking fault energy and deformation behaviour in 316L austenitic stainless steel [J]. Mater. Sci. Eng., 2019, 759A: 490
23 Allain S, Chateau J P, Bouaziz O, et al. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys [J]. Mater. Sci. Eng., 2004, 387-389A: 158
24 Wang C, Lin X, Wang L L, et al. Cryogenic mechanical properties of 316L stainless steel fabricated by selective laser melting [J]. Mater. Sci. Eng., 2021, 815A: 141317
25 Shi J T, Hou L G, Zuo J R, et al. Quantitative analysis of the martensite transformation and microstructure characterization during cryogenic rolling of a 304 austenitic stainless steel [J]. Acta Metall. Sin., 2016, 52(8): 945
doi: 10.11900/0412.1961.2015.00635
史金涛, 侯陇刚, 左锦荣 等. 304奥氏体不锈钢超低温轧制变形诱发马氏体转变的定量分析及组织表征 [J]. 金属学报, 2016, 52(8): 945
doi: 10.11900/0412.1961.2015.00635
26 Crivoi M R, Hoyos J J, Izumi M T, et al. In situ analysis of cryogenic strain of AISI 316L stainless steel using synchrotron radiation [J]. Cryogenics, 2020, 105: 103020
doi: 10.1016/j.cryogenics.2019.103020
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!