Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (11): 871-880    DOI: 10.11901/1005.3093.2022.669
ARTICLES Current Issue | Archive | Adv Search |
Synthesis of Z-scheme Ag3PO4/MIL-125(Ti) Heterojunction and Its Performance in Photocatalytic Reduction of Cr(VI)
SUN Yuwei1,2, CHEN Chou1, QI Xin1, REN Chuqi1, TANG Qian1,2, TENG Honghui1,2(), REN Baixiang1,2
1.College of Engineering, Jilin Normal University, Siping 136000, China
2.Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping 136000, China
Cite this article: 

SUN Yuwei, CHEN Chou, QI Xin, REN Chuqi, TANG Qian, TENG Honghui, REN Baixiang. Synthesis of Z-scheme Ag3PO4/MIL-125(Ti) Heterojunction and Its Performance in Photocatalytic Reduction of Cr(VI). Chinese Journal of Materials Research, 2023, 37(11): 871-880.

Download:  HTML  PDF(7889KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A composite of Z-scheme Ag3PO4/MIL-125(Ti) heterojunction was synthesized by loading Ag3PO4 nano particles on the surface of round-shaped MIL-125(Ti). The Ag3PO4/MIL-125(Ti) composite can effectively improve the utilization of light and charge separation efficiency. The crystal-structure, morphology, optical absorption, valence band structure and charge separation efficiency of the prepared Ag3PO4/MIL-125(Ti) composite were characterized by XRD、SEM、EDS、UV-vis、FTIR、EIS and PL testing methods. Under a simulated solar irradiation, the performance of Cr(VI) reduction by Ag3PO4/MIL125(Ti) composite with different deposition amounts of Ag3PO4 was studied. Furthermore, the effect of solution pH and catalyst dosage in the photocatalytic reduction process was also discussed. The photocatalytic test results indicated that the deposition of Ag3PO4 effectively improved the photocatalytic reduction performance of MIL-125(Ti). When the concentration of Cr(VI) solution was 10mg/L and pH was 2, the reduction rate of Cr(VI) by Ag3PO4/MIL-125(Ti)-2 could reach to 96.9%. The results of bandgap structure calculation and free radical trapping experiments show that photon-generated carriers in Ag3PO4/MIL-125(Ti) are conformed to Z-scheme mechanism.

Key words:  inorganic non-metallic materials      MIL-125 (Ti)      Ag3PO4      Z-scheme heterojunction      photocatalytic      reduction of Cr(VI)     
Received:  19 December 2022     
ZTFLH:  X703.1  
Fund: Department of Science and Technology of Jilin Province(YDZJ202201ZYTS368);Department of Science and Technology of Jilin Province(20210101391JC);Department of Education of Jilin Province(JJKH20220451KJ);Department of Education of Jilin Province(JJKH20230517KJ)
Corresponding Authors:  TENG Honghui, Tel: 13944400855, E-mail: hhteng2022@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.669     OR     https://www.cjmr.org/EN/Y2023/V37/I11/871

Fig.1  XRD patterns of different samples
Fig.2  SEM of MIL125(Ti) (a), Ag3PO4 (b), Ag3PO4/MIL125(Ti)-2 (c) and EDS spectrum of Ag3PO4/MIL125(Ti)-2 (d~g)
Fig.3  UV-vis spectrum (a), (αhv)1/2 vs. hv curves of different samples (b), VB profiles of MIL-125(Ti) and Ag3PO4 (c) and the band structure diagrams of MIL125(Ti) and Ag3PO4 (d)
Fig.4  Infrared spectrum of different samples
Fig.5  EIS (a) and PL spectrum (b) of different samples
Fig.6  Photocatalytic reduction performance of different samples (a) and the first-order kinetic curves (b) of the photoca-talytic reduction of Cr(VI)
Fig.7  Effects of different initial pH values on the photocatalytic reduction performance (a, b), the effects of different dosage on the photocatalytic reduction performance (c, d), the effects of different organic acids on the photocatalytic reduction performance (e, f)
Catalyst and dosage /mg·L-1

Pollutants

/ mg·L-1

IrradiationpHEfficiency /%Ref.
Pt/MIL-125-NH2/1000Cr(VI)/15300 W Xe lamp675.0% (120 min)[40]
Bi2S3@NH2-MIL-125(Ti)/100Cr(VI)/10300 W Xe lamp777.0% (120 min)[41]
CdS/MIL-125(Ti)/500Cr(VI)/48300 W Xe lamp(cut~420 nm)635.0% (70 min)[42]
Pd@MIL-101/1000Cr(VI)/10125 W light pressure mercury lamp646.4% (240 min)[43]
MIL-125-derived TiO2@C/300Cr(VI)/5361.8% (90 min)[44]
Ag3PO4/MIL-125(Ti)-2Cr(VI)/10300 W Xe lamp677.6% (90 min)This work
Ag3PO4/MIL-125(Ti)-2Cr(VI)/10300 W Xe lamp296.9% (90 min)This work
Table1  Comparison of photocatalytic Cr(VI) removal activities of various MOFs-based photocatalysts
Fig.8  4 cycles of photocatalytic reduction experiment (a) and XRD patterns (b) of Ag3PO4/MIL-125(Ti)-2 before and after 6 cycles
Fig.9  Experimental results of active species capture
Fig.10  Mechanism of photocatalytic reduction of Cr(VI) by Ag3PO4/MIL-125(Ti)
1 Li Y X, WANG X, WANG C C, et al. S-TiO2/UiO-66-NH2 composite for boosted photocatalytic Cr(VI) reduction and bisphenol A degradation under LED visible light [J]. J. Hazaed. Mater., 2020, 399: 123085
2 Ma J, Chen K Z. Designing porous nickel architectures for adsorptive removal of Cr(VI) to achieve drinking water standard [J]. Sep. Purif. Technol., 2020, 241: 116705
doi: 10.1016/j.seppur.2020.116705
3 Zhang L X, Li P, Feng L P, et al. Controllable fabrication of visible-light-driven CoS x /CdS photocatalysts with direct Z-scheme heterojunctions for photocatalytic Cr(VI) reduction with high efficiency [J]. Chem. Eng. J., 2020, 397: 125464
doi: 10.1016/j.cej.2020.125464
4 Wang M, Zeng Y B, Dong G H, et al. Br-doping of g-C3N4 towards enhanced photocatalytic performance in Cr(VI) reduction [J]. Chin. J. Catal., 2020, 41(10): 1498
doi: 10.1016/S1872-2067(19)63435-2
5 Hu Q S, Di J, Wang B, et al. In-situ preparation of NH2-MIL-125(Ti)/BiOCl composite with accelerating charge carriers for boosting visible light photocatalytic activity [J]. Appl. Surf. Sci., 2019, 466: 525
doi: 10.1016/j.apsusc.2018.10.020
6 Guo J Y, Fu Y J, Zhang K J, et al. Preparation and visible light catalytic performance of g-C3N4/POPs heterojunction [J]. Acta Mater. Compos. Sin, 2023, 40: 904
郭佳允, 傅炀杰, 张柯杰 等. g-C3N4/POPs异质结制备及其可见光催化性能 [J]. 复合材料学报, 2023, 40: 904
7 Haroon H, Majid K. MnO2 nanosheets supported metal-organic framework MIL-125(Ti) towards efficient visible light photocatalysis: Kinetic and mechanistic study [J]. Chem. Phys. Lett., 2020, 745: 137283
doi: 10.1016/j.cplett.2020.137283
8 Zhang X Y, Zhang Q Y, Tang T, et al. Fabrication of composite material based on MOFs and its adsorption properties for methylene blue dyes [J]. Chin. J. Mater. Res., 2021, 35: 866
doi: 10.11901/1005.3093.2021.002
张向阳, 章奇羊, 汤 涛 等. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能 [J]. 材料研究学报, 2021, 35: 866
doi: 10.11901/1005.3093.2021.002
9 Yue K, Zhang X D, Jiang S T, et al. Recent advances in strategies to modify MIL-125(Ti) and its environmental applications [J]. J. Mol. Liq., 2021, 335: 116108
doi: 10.1016/j.molliq.2021.116108
10 Ao D, Zhang J, Liu H. Visible-light-driven photocatalytic degradation of pollutants over Cu-doped NH2-MIL-125(Ti) [J]. J. Photoch. Photobio., 2018, 364A: 524
11 Cui W C, Shang J P, Bai H Y, et al. In-situ implantation of plasmonic Ag into metal-organic frameworks for constructing efficient Ag/NH2-MIL-125/TiO2 photoanode [J]. Chem. Eng. J., 2020, 388: 124206
doi: 10.1016/j.cej.2020.124206
12 Abdelhameed R M, Abu-Elghait M, El-Shahat M. Hybrid three MOFs composites (ZIF-67@ZIF-8@MIL-125-NH2): Enhancement the biological and visible-light photocatalytic activity [J]. J. Environ. Chem. Eng., 2020, 8(5): 104107
doi: 10.1016/j.jece.2020.104107
13 Wang Z C, Liu Y, Li J H, et al. Efficient immobilization of enzymes on amino functionalized MIL-125-NH2 metal organic framework [J]. Biotechnol. Bioproc. Eng., 2022, 27(1): 135
doi: 10.1007/s12257-020-0393-y
14 Xu Y F, Zhou Y, Deng Y H, et al. Synthesis of Bi2WO6@NH2-MIL-125(Ti): A S-scheme photocatalyst with enhanced visible light catalytic activity [J]. Catal. Lett., 2020, 150(12): 3470
doi: 10.1007/s10562-020-03258-0
15 Li Y X, Wang C C, Fu H F, et al. Marigold-flower-like TiO2/MIL-125 core-shell composite for enhanced photocatalytic Cr(VI) reduction [J]. J. Environ. Chem. Eng., 2021, 9(4): 105451
doi: 10.1016/j.jece.2021.105451
16 Hu Q S, Yin S, Chen Y, et al. Construction of MIL-125(Ti)/ZnIn2S4 composites with accelerated interfacial charge transfer for boosting visible light photoreactivity [J]. Colloids Surf., 2020, 585A: 124078
17 Han L, Zhang X M, Wu D Y. MoS2 quantum dots decorated NH2-MIL-125 heterojunction: preparation and visible light photocatalytic performance [J]. J. Inorg. Mater., 2019, 34(11): 1205
韩 丽, 张晓敏, 吴德勇. 具有可见光催化活性的MoS2量子点/NH2-MIL-125复合材料的制备及性能表征 [J]. 无机材料学报, 2019, 34(11): 1205
18 Promnopas S, Promnopas W, Maisang W, et al. One-step microwave-hydrothermal synthesis of visible-light-driven Ag3PO4/LaPO4 photocatalyst induced by visible light irradiation [J]. Chem. Phys. Lett., 2021, 779: 138883
doi: 10.1016/j.cplett.2021.138883
19 Cui C, Wang Y P, Liang D Y, et al. Photo-assisted synthesis of Ag3PO4/reduced graphene oxide/Ag heterostructure photocatalyst with enhanced photocatalytic activity and stability under visible light [J]. Appl. Catal., 2014, 158-159B: 150
20 Liu J H, Li X, Liu F, et al. The stabilization effect of surface capping on photocatalytic activity and recyclable stability of Ag3PO4 [J]. Catal. Commun., 2014, 46: 138
doi: 10.1016/j.catcom.2013.12.005
21 Sofi F A, Majid K. Enhancement of the photocatalytic performance and thermal stability of an iron based metal–organic-framework functionalised by Ag/Ag3PO4 [J]. Mater. Chem. Front., 2018, 2: 942
doi: 10.1039/C8QM00051D
22 Zhou T H, Zhang G Z, Zhang H W, et al. Highly efficient visible-light-driven photocatalytic degradation of rhodamine B by a novel Z-scheme Ag3PO4/MIL-101/NiFe2O4 composite [J]. Catal. Sci. Technol., 2018, 8: 2402
doi: 10.1039/C8CY00182K
23 Liang Y H, Shang R, Lu J R, et al. Ag3PO4@UMOFNs core–shell structure: two-dimensional MOFs promoted photoinduced charge separation and Photocatalysis [J]. ACS Appl. Mater. Interfaces, 2018, 10: 8758
doi: 10.1021/acsami.8b00198
24 Han X, Yang X B, Liu G B, et al. Boosting visible light photocatalytic activity via impregnation-induced RhB-sensitized MIL-125(Ti) [J]. Chem. Eng. Res. Des., 2019, 143: 90
doi: 10.1016/j.cherd.2019.01.010
25 Liu L, Ding L, Liu Y G, et al. A stable Ag3PO4@PANI core@shell hybrid: Enrichment photocatalytic degradation with π-π conjugation [J]. Appl. Catal., 2017, 201B: 92
26 Xie L C, Yang Z H, Xiong W P, et al. Construction of MIL-53(Fe) metal-organic framework modified by silver phosphate nanoparticles as a novel Z-scheme photocatalyst: Visible-light photocatalytic performance and mechanism investigation [J]. Appl. Surf. Sci., 2019, 465: 103
doi: 10.1016/j.apsusc.2018.09.144
27 Hu Z, He Q B, Ge M. Photocatalytic degradation of organic contaminants by magnetic Ag3PO4/MFe2O4 (M = Zn, Ni, Co) composites: a comparative study and a new insight into mechanism [J]. J. Mater. Sci. Mater. Electron., 2021, 32(1): 827
doi: 10.1007/s10854-020-04861-y
28 Yang X M, Gu W H, Ma Y W, et al. Interface electron transfer of Bi2MoO6/MIL-125 and the visible-light performance for pollutant degradation [J]. Colloids Surf., 2020, 597A: 124748
29 Abdelhameed R M, Simões M M Q, Silva A M S, et al. Enhanced photocatalytic activity of MIL-125 by post-synthetic modification with CrIII and Ag nanoparticles [J]. Chem. Eur. J., 2015, 21(31): 11072
doi: 10.1002/chem.v21.31
30 George P, Chowdhury P. NH2-MIL-125(Ti) and its emeraldine functionalized derivative as a chemical sensor for effective detection of dopamine [J]. Micropor. Mesopor. Mat., 2019, 288: 109591
doi: 10.1016/j.micromeso.2019.109591
31 Zhu S R, Liu R F, Wu M K, et al. Enhanced photocatalytic performance of BiOBr/NH2-MIL-125(Ti) composite for dye degradation under visible light [J]. Dalton Trans., 2016, 45(43): 17521
doi: 10.1039/C6DT02912D
32 Chen S, Huang D L, Zeng G M, et al. In-situ synthesis of facet-dependent BiVO4/Ag3PO4/PANI photocatalyst with enhanced visible-light-induced photocatalytic degradation performance: synergism of interfacial coupling and hole-transfer [J]. Chem. Eng. J., 2020, 382: 122840
doi: 10.1016/j.cej.2019.122840
33 Lv Y H, Liu H Y, Jin D X, et al. Effective degradation of norfloxacin on Ag3PO4/CNTs photoanode: Z-scheme mechanism, reaction pathway, and toxicity assessment [J]. Chem. Eng. J., 2022, 429: 132092
doi: 10.1016/j.cej.2021.132092
34 Wang F H, Liu X Z, Xu L, et al. One-pot synthesis of CeO2/Mg-Al layered double oxide nanosheets for efficient visible-light induced photo-reduction of Cr(VI) [J]. Colloids Surf., 2020, 601A: 125044
35 Deng Y C, Tang L, Zeng G M, et al. Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: Performance and reaction mechanism [J]. Appl. Catal., 2017, 203B: 343
36 Ma N, Qiu Y W, Zhang Y C, et al. Reduced graphene oxide enwrapped pinecone-liked Ag3PO4/TiO2 composites with enhanced photocatalytic activity and stability under visible light [J]. J. Alloys Compd., 2015, 648: 818
doi: 10.1016/j.jallcom.2015.07.070
37 Yu C F, Yang P Y, Tie L N, et al. One-pot fabrication of β-Bi2O3@Bi2S3 hierarchical hollow spheres with advanced sunlight photocatalytic RhB oxidation and Cr(VI) reduction activities [J]. Appl. Surf. Sci., 2018, 455: 8
doi: 10.1016/j.apsusc.2018.04.201
38 Song X L, Wang Y, Zhu T, et al. Facile synthesis a novel core-shell amino functionalized MIL-125(Ti) micro-photocatalyst for enhanced degradation of tetracycline hydrochloride under visible light [J]. Chem. Eng. J., 2021, 416: 129126
doi: 10.1016/j.cej.2021.129126
39 Yi X H, Wang F X, Du X D, et al. Facile fabrication of BUC-21/g-C3N4 composites and their enhanced photocatalytic Cr(VI) reduction performances under simulated sunlight [J]. Appl. Organomet. Chem., 2019, 33: e4621
doi: 10.1002/aoc.v33.1
40 Qiu J H, Yang L Y, Li M, et al. Metal nanoparticles decorated MIL-125-NH2 and MIL-125 for efficient photocatalysis [J]. Mater. Res. Bull., 2019, 112: 297
doi: 10.1016/j.materresbull.2018.12.038
41 Wang M H, Yang L Y, Yuan J Y, et al. Heterostructured Bi2S3@NH2-MIL-125(Ti) nanocomposite as a bifunctional photocatalyst for Cr(vi) reduction and rhodamine B degradation under visible light [J]. RSC Adv., 2018, 8: 12459
doi: 10.1039/C8RA00882E
42 Wang H, Yuan X Z, Wu Y, et al. Photodeposition of metal sulfides on titanium metal-organic frameworks for excellent visible-light-driven photocatalytic Cr(vi) reduction [J]. RSC Adv., 2015, 5: 32531
doi: 10.1039/C5RA01283J
43 Liu S J, Zhou X F, Wei C H, et al. Spatial directional separation and synergetic treatment of Cr(VI) and Rhodamine B mixed pollutants on three-layered Pd@MIL-101/P25 photocatalyst [J]. Sci. Total. Environ., 2022, 842: 156836
doi: 10.1016/j.scitotenv.2022.156836
44 Gao K, Chen J, Liu Z, et al. Intensified redox co-conversion of As(III) and Cr(VI) with MIL-125(Ti)-derived COOH functionalized TiO2: performance and mechanism [J]. Chem. Eng. J., 2019, 360: 1223
doi: 10.1016/j.cej.2018.09.134
45 Shi C, Qi H J, Sun Z, et al. Carbon dot-sensitized urchin-like Ti3+ self-doped TiO2 photocatalysts with enhanced photoredox ability for highly efficient removal of Cr6+ and RhB [J]. J. Mater. Chem., 2020, 8C: 2238
46 Meng X F, Zhuang Y, Tang H, et al. Hierarchical structured ZnFe2O4@SiO2@TiO2 composite for enhanced visible-light photocatalytic activity [J]. J. Alloys Compd., 2018, 761: 15
doi: 10.1016/j.jallcom.2018.05.150
47 Wang Y H, Kang C L, Li X Y, et al. Ag NPs decorated C-TiO2/Cd0.5Zn0.5S Z-scheme heterojunction for simultaneous RhB degradation and Cr(VI) reduction [J]. Environ. Pollut., 2021, 286: 117305
doi: 10.1016/j.envpol.2021.117305
48 Wang J C, Ren J, Yao H C, et al. Synergistic photocatalysis of Cr(VI) reduction and 4-Chlorophenol degradation over hydroxylated α-Fe2O3 under visible light irradiation [J]. J. Hazard. Mater., 2016, 311: 11
doi: 10.1016/j.jhazmat.2016.02.055
49 Hu X F, Ji H H, Chang F, et al. Simultaneous photocatalytic Cr(VI) reduction and 2,4,6-TCP oxidation over g-C3N4 under visible light irradiation [J]. Catal. Today, 2014, 224: 34
doi: 10.1016/j.cattod.2013.11.038
50 Yi X H, Ma S Q, Du X D, et al. The facile fabrication of 2D/3D Z-scheme g-C3N4/UiO-66 heterojunction with enhanced photocatalytic Cr(VI) reduction performance under white light [J]. Chem. Eng. J., 2019, 375: 121944
doi: 10.1016/j.cej.2019.121944
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] WANG Sheng, ZHOU Qiaoting, ZHAN Huimin, CHEN Jingjing. Atomic Analysis of Contact-induced Subsurface Damage Behavior of Single Crystal SiC Based on Molecular Simulation[J]. 材料研究学报, 2023, 37(12): 943-951.
[9] WANG Yue, FU Boyan, CHEN Shuanglong, ZOU Binglin, WANG Chunjie. Thermophysical Properties of Ln2(Zr0.7Ce0.3)2O7 (Ln=La, Nd, Sm, Gd) Nanomaterials for Thermal Barrier Coatings[J]. 材料研究学报, 2023, 37(11): 855-861.
[10] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[11] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[12] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[13] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
No Suggested Reading articles found!